Exercises 4 : Interaction and Concurrency

Luís Soares Barbosa

Exercise I. 1

Suppose two variants of parallel composition have been added to the process language \mathbb{P} and defined through the following rules:

$$
\begin{array}{cc}
\frac{E \xrightarrow{a} E^{\prime}}{E \otimes F \xrightarrow{a} E^{\prime} \otimes F}\left(O_{1}\right) & \frac{F \xrightarrow{a} F^{\prime}}{E \otimes F \xrightarrow{a} E \otimes F^{\prime}}\left(O_{2}\right) \\
\underset{E \| \xrightarrow{a} E^{\prime} \wedge \bar{a} \notin \mathcal{L}(F)}{E \|}\left(P_{1}\right) & \frac{F \xrightarrow{a} F^{\prime} \wedge \bar{a} \notin \mathcal{L}(E)}{E\|F \xrightarrow{a} E\| F^{\prime}}\left(P_{2}\right) \\
\frac{E \xrightarrow{a} E^{\prime} F \xrightarrow{\bar{a}} F^{\prime}}{E\left\|F \xrightarrow{\tau} E^{\prime}\right\| F^{\prime}}\left(P_{3}\right)
\end{array}
$$

1. Explain, in your own words, the meaning of $\otimes \mathrm{e} \|$.
2. Guided by the semantic rules given, show how the synchronisation diagrams for $E \otimes F$ and $E \| F$ can be built from the corresponding diagrams for E and F.
3. Is \| associative with respect to \sim ?

Exercise I. 2

Identify, in the list of process pairs below, which of them can be related by \approx. And by $=$?

1. a. $\tau . b .0 \mathrm{e} a . b .0$
2. $a .(b . \mathbf{0}+\tau . c . \mathbf{0}) \mathrm{e} a .(b . \mathbf{0}+c . \mathbf{0})$
3. $a .(b . \mathbf{0}+\tau . c . \mathbf{0}) \mathrm{e} a .(b . \mathbf{0}+c . \mathbf{0})+a . c . \mathbf{0}$
4. $a . \mathbf{0}+b . \mathbf{0}+\tau . b . \mathbf{0}$ e $a . \mathbf{0}+\tau . b . \mathbf{0}$
5. $a . \mathbf{0}+b . \mathbf{0}+\tau . b . \mathbf{0} \mathrm{e} a . \mathbf{0}+b . \mathbf{0}$
6. $a .(b . \mathbf{0}+(\tau .(c .0+\tau . d . \mathbf{0}))) \mathrm{e} a .(b . \mathbf{0}+(\tau .(c . \mathbf{0}+\tau . d . \mathbf{0})))+a .(c . \mathbf{0}+\tau . d . \mathbf{0})$
7. $a .(b . \mathbf{0}+(\tau .(c . \mathbf{0}+\tau . d . \mathbf{0}))) \mathrm{e} a .(b . \mathbf{0}+c . \mathbf{0}+d . \mathbf{0})+a .(c . \mathbf{0}+d . \mathbf{0})+a . d . \mathbf{0}$
8. $\tau .(a . b . \mathbf{0}+a . c . \mathbf{0}) \mathrm{e} \tau . a . b . \mathbf{0}+\tau . a . c . \mathbf{0}$
9. $\tau .(a . \tau . b . \mathbf{0}+a . b . \tau . \mathbf{0})$ e a.b. $\mathbf{0}$
10. $\tau .(\tau . a . \mathbf{0}+\tau . b . \mathbf{0}) \mathrm{e} \tau . a . \mathbf{0}+\tau . b . \mathbf{0}$
11. $A \triangleq a . \tau . A$ e $B \triangleq a . B$
12. $A \triangleq \tau . A+a .0$ e $a .0$
13. $A \triangleq \tau . A \mathrm{e} \mathbf{0}$

Exercise I. 3

Suppose processes R and T have transitions $R \xrightarrow{\tau} T$ and $T \xrightarrow{\tau} R$, among others. Show that, under this condition, $R=T$.

Exercise I. 4

Consider the following statements about a binary relation S on \mathbb{P}. Discuss whether you may conclude from each of them whether S is (or is not) a weak bisimulation.
observacional:

1. S is the identity in \mathbb{P}.
2. S is a subset of the identity in \mathbb{P}.
3. S is a strict bisimulation up to \Leftrightarrow.
4. S is the empty relation.
5. $S=\{(a . E, a . F) \mid E \approx F\}$.
6. $S=\{(a . E, a . F) \mid E \approx F\} \cup \approx$.

Exercise I. 5

Show that

1. $E+\tau \cdot(E+F)=\tau \cdot(E+F)$
2. $a .(E+\tau . \tau . E)=a . E$
3. $\tau \cdot(G+a \cdot(E+\tau \cdot F))=\tau \cdot(G+a \cdot(E+\tau \cdot F))+a \cdot F$

Exercise I. 6

Show that any process $\tau .(\tau . P+a .0)$ is a solution to equation $X=a .0+\tau . X$.

Exercise I. 7

Let E be a process such that $\operatorname{fn}(E)=\emptyset$. Prove or refute the following statements:

1. $E \mid Q \approx Q$.
2. $E \mid Q=Q$.
3. $E \mid Q=\tau . Q$.

Exercise I. 8

Although concurrent systems usually deal with components exhibiting non terminating behaviour, it is sometimes useful also to consider terminating processes and their composition. Let T be a class of terminating processes which perform a special action \dagger to announce completion of all their tasks and evolve to $\mathbf{0}$ after that. In this class it is possible to define a combinator for sequential composition $P ; Q$, whose behaviour is informally explained as once P terminates, $P ; Q$ behaves like Q. Formally,

$$
P ; Q \triangleq \operatorname{new}\{m\}(\{m / \dagger\} P \mid \bar{m} \cdot Q)
$$

where m is fresh identifier, not occurring neither in P nor Q.

1. Define a process $U \in T$ such that $U ; P \approx P$. Justify your proposal.
2. Prove or refute that, for any $P, Q, R \in T$,

$$
(P+Q) ; R \approx(P ; R)+(Q ; R)
$$

3. As sequential composition is a particular case of parallel composition, the law above could be regarded as a particular case of

$$
(P+Q) \mid R \approx(P \mid R)+(Q \mid R)
$$

This equation, however, is false. Confirm this by providing a suitable counter-example..

Exercise I. 9

Consider the following specification of a pipe, as supported e.g. in UNIX:

$$
U \triangleright V \stackrel{\text { abv }}{=} \text { new }\{c\}(\{c / \text { out }\} U \mid\{c / i n\} V)
$$

under the assumption that, in both processes, actions $\overline{o u t}$ e in stand for, respectively, the output and input ports.

1. Consider now the following processes only partially defined:

$$
\begin{aligned}
U_{1} & \triangleq \overline{o u t} \cdot T \\
V_{1} & \triangleq \text { in. } R \\
U_{2} & \triangleq \overline{o u t} \cdot \overline{o u t} \cdot \overline{o u t} \cdot T \\
V_{2} & \triangleq \text { in.in.in. } R
\end{aligned}
$$

Prove, by equational reasoning, or refute the following properties:
(a) $U_{1} \triangleright V_{1} \sim T \triangleright R$
(b) $U_{2} \triangleright V_{2}=U_{1} \triangleright V_{1}$
2. Show or refute the associativity of \triangleright wrt process equality, i.e., for all $P, T, V \in \mathbb{P}$,

$$
(U \triangleright V) \triangleright T=U \triangleright(V \triangleright T)
$$

3. Show that $\mathbf{0} \triangleright \mathbf{0}=\mathbf{0}$.

Exercise I. 10

Consider a combinator \circlearrowleft_{n} whose operational semantics is given by following rule

$$
\frac{E \xrightarrow{a} E^{\prime}}{\circlearrowleft_{0} E \xrightarrow{a} E^{\prime}} \quad \frac{E \xrightarrow{a} E^{\prime}}{\circlearrowleft_{n} E \xrightarrow{a} \circlearrowleft_{n-1} E^{\prime}} \quad \text { for } n>0
$$

1. Explain its purpose.
2. Discuss whether, and for which values of m and n, one may have $\circlearrowleft_{n}\left(\circlearrowleft_{m} E\right) \sim \circlearrowleft_{n} E$.
3. Show that $E \sim F$ implies $\circlearrowleft_{n} E \sim \circlearrowleft_{n} F$.
4. Show, by a counter-example, that, whenever \sim is replaced by \approx, the implication above fails.
5. How could the operational semantics of this new combinator be changed so that the implication mentioned above holds? I.e. so that $E \approx F \Rightarrow \circlearrowleft_{n} E \approx \circlearrowleft_{n} F$?

Exercise I. 11

Consider a combinator whose operational semantics is given by following rule

$$
\frac{E \xrightarrow{x} E^{\prime}}{E \downarrow a \xrightarrow{x} E^{\prime}} \text { if } \quad x \neq a, x \neq \bar{a}
$$

1. Explain its purpose.
2. Show that $P \downarrow a \sim Q \downarrow a$ if $P \sim Q$.
3. Define two processes E and F such that $E \approx F$ but $E \downarrow a \not \approx F \downarrow a$.
4. Prove or refute that if $P=Q$ then $P \downarrow a=Q \downarrow a$.

Exercise I. 12

Consider a new process combinator, called an action duplicator, and defined by the following rule:

$$
\frac{E \xrightarrow{a} E^{\prime}}{\circlearrowleft(E) \xrightarrow{a} E}
$$

Note that the derivative in the rule's conclusion is E (and not E^{\prime}). For example, $\circlearrowleft(a .0) \xrightarrow{a} a .0$. Prove or refute that

1. $E \sim F$ implies $\circlearrowleft(E) \sim \circlearrowleft(F)$.
2. $E \approx F$ implies $\circlearrowleft(E) \approx \circlearrowleft(F)$.
3. $\circlearrowleft(E+F) \sim \circlearrowleft(E)+\circlearrowleft(F)$.
