

Exercises 5 : Interaction and Concurrency

Luís Soares Barbosa

Exercise 1

Formalise each of the following properties in Process Logic \mathcal{M} . Note they are formulated in a somehow ambiguous way, and can therefore be formalised in different ways.

- 1. The occurrence of a and b is impossible.
- 2. The occurrence of *a* followed by *b* is impossible.
- 3. Only the occurrence of *a* is possible.
- 4. Once *a* occurred, *b* or *c* may occur.
- 5. After *a* occurred followed by *b*, *c* may occur.
- 6. Once *a* occurred, *b* or *c* may occur but not both.
- 7. a cannot occur before b.
- 8. There is only an initial transition labelled by *a*.

Exercise 2

Consider the following processes and enumerate for each of them the properties they verify:

1. $E_1 \triangleq a.b.0$ 2. $E_2 \triangleq a.c.0$ 3. $E \triangleq E_1 + E_2$ 4. $F \triangleq a.(b.0 + c.0)$

5. $G \triangleq E + F$

Exercise 3

Consider the following specification of a CNC program:

 $Start \triangleq fw.Go + stop.\mathbf{0}$

 $Go \triangleq fw.bk.bk.Start + right.left.bk.Start$

Formalise in \mathcal{M} the following properties:

- 1. After fw another fw is immediately possible
- 2. After fw followed by right, left is possible but bk is not.
- 3. Action fw is the only one initially possible
- 4. The third action of process Start is not fw.

Exercise 4

Specify a LTS such that the following modal properties hold simultaneously in its initial state:

- $\langle a \rangle \langle b \rangle \langle c \rangle$ true $\wedge \langle c \rangle$ true
- $\langle a \rangle \langle b \rangle ([a] \text{ false } \land [c] \text{ false } \land [b] \text{ false})$
- $\langle a \rangle \langle b \rangle (\langle a \rangle \operatorname{true} \land [c] \operatorname{false})$

Exercise 5

Consider the following Act-labelled transition systems.

Show that states *s*, *t* and *v* are not bisimilar and determine the modal properties which distinguish between them.

Exercise 6

Let *E* be a process. A formula ϕ is said to be *characteristic* of *E* iff

$$\forall_{F \in \mathbb{P}} . F \models \phi \ sse \ F \sim E$$

Note that a process verifies the characteristic formula of E iff it is strongly bisimilar to E.

Determine the *characteristic* formula of process x.0.

Exercise 7

Consider processes $E \triangleq a.(b.\mathbf{0} + c.\mathbf{0})$ e $F \triangleq a.b.\mathbf{0} + a.c.\mathbf{0}$. Propose a formula ϕ in \mathcal{M} valid in E but false in F.

Exercise 8

Consider processes below and write down a formula in M valid in R but not in S.

$$E \triangleq b.c.\mathbf{0} + b.d.\mathbf{0} \tag{1}$$

$$F \triangleq E + b.(c.\mathbf{0} + d.\mathbf{0}) \tag{2}$$

$$R \triangleq a.E + a.F \tag{3}$$

 $S \triangleq a.F$ (4)

Exercise 9

Define in \mathcal{M} , by abbreviation, a connective (K), with $K \subseteq Act$, such that $E \models (K)\phi$ iff actions in K are the initial actions of E, all of then leading to states which validates ϕ .

Exercise 10

In general, parallel composite in process algebra fails to be idempotent.

- 1. Making $E \triangleq a.b.E$, formalise a property in \mathcal{M} to distinguish between E and $E \mid E$.
- 2. In some cases idempotency holds. Build a bissimulation to witness equivalence $E \sim E \mid E$ when E is $E \triangleq \sum_{x \in K} x.E$, for any $K \subseteq Act \{\tau\}$. Would this remain true for Act?

Exercise 11

Compute

- 1. $\|[a][b]\langle c,d\rangle$ true $\|$
- 2. $||\langle a \rangle \langle \rangle$ true ||
- 3. $||[a] \langle \rangle$ true $\land [b] [-]$ false ||
- 4. $\|[a] \langle \rangle$ true $\lor [b] [-]$ false $\|$