Exercises 5 : Interaction and Concurrency

Luís Soares Barbosa

Exercise 1

Formalise each of the following properties in Process Logic \mathcal{M}. Note they are formulated in a somehow ambiguous way, and can therefore be formalised in different ways.

1. The occurrence of a and b is impossible.
2. The occurrence of a followed by b is impossible.
3. Only the occurrence of a is possible.
4. Once a occurred, b or c may occur.
5. After a occurred followed by b, c may occur.
6. Once a occurred, b or c may occur but not both.
7. a cannot occur before b.
8. There is only an initial transition labelled by a.

Exercise 2

Consider the following processes and enumerate for each of them the properties they verify:

1. $E_{1} \triangleq a . b .0$
2. $E_{2} \triangleq a . c .0$
3. $E \triangleq E_{1}+E_{2}$
4. $F \triangleq a .(b . \mathbf{0}+c . \mathbf{0})$
5. $G \triangleq E+F$

Exercise 3

Consider the following specification of a CNC program:

$$
\begin{aligned}
\text { Start } & \triangleq \text { fw.Go }+ \text { stop } . \mathbf{0} \\
\text { Go } & \triangleq \text { fw.bk.bk.Start + right.left.bk.Start }
\end{aligned}
$$

Formalise in \mathcal{M} the following properties:

1. After $f w$ another $f w$ is immediately possible
2. After $f w$ followed by right, left is possible but $b k$ is not.
3. Action $f w$ is the only one initially possible
4. The third action of process Start is not $f w$.

Exercise 4

Specify a LTS such that the following modal properties hold simultaneously in its initial state:

- $\langle a\rangle\langle b\rangle\langle c\rangle$ true $\wedge\langle c\rangle$ true
- $\langle a\rangle\langle b\rangle([a]$ false $\wedge[c]$ false $\wedge[b]$ false $)$
- $\langle a\rangle\langle b\rangle(\langle a\rangle$ true $\wedge[c]$ false $)$

Exercise 5

Consider the following Act-labelled transition systems.

Show that states s, t and v are not bisimilar and determine the modal properties which distinguish between them.

Exercise 6

Let E be a process. A formula ϕ is said to be characteristic of E iff

$$
\forall_{F \in \mathbb{P}} \cdot F \models \phi \text { sse } F \sim E
$$

Note that a process verifies the characteristic formula of E iff it is strongly bisimilar to E.
Determine the characteristic formula of process $x .0$.

Exercise 7

Consider processes $E \triangleq a .(b . \mathbf{0}+c . \mathbf{0})$ e $F \triangleq a . b .0+a . c . \mathbf{0}$. Propose a formula ϕ in \mathcal{M} valid in E but false in F.

Exercise 8

Consider processes below and write down a formula in \mathcal{M} valid in R but not in S.

$$
\begin{align*}
E & \triangleq b . c \cdot \mathbf{0}+b . d . \mathbf{0} \tag{1}\\
F & \triangleq E+b \cdot(c . \mathbf{0}+d .0) \tag{2}\\
R & \triangleq a . E+a . F \tag{3}\\
S & \triangleq a . F \tag{4}
\end{align*}
$$

Exercise 9

Define in \mathcal{M}, by abbreviation, a connective (K), with $K \subseteq A c t$, such that $E \models(K) \phi$ iff actions in K are the initial actions of E, all of then leading to states which validates ϕ.

Exercise 10

In general, parallel composite in process algebra fails to be idempotent.

1. Making $E \triangleq a . b . E$, formalise a property in \mathcal{M} to distinguish between E and $E \mid E$.
2. In some cases idempotency holds. Build a bissimulation to witness equivalence $E \sim E \mid E$ when E is $E \triangleq$ $\sum_{x \in K} x . E$, for any $K \subseteq A c t-\{\tau\}$. Would this remain true for $A c t$?

Exercise 11

Compute

1. $\|[a][b]\langle c, d\rangle$ true $\|$
2. $\|\langle a\rangle\langle-\rangle$ true $\|$
3. $\|[a]\langle-\rangle$ true $\wedge[b][-]$ false $\|$
4. $\|[a]\langle-\rangle$ true $\vee[b][-]$ false $\|$
