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Lúıs Soares Barbosa

Interaction & Concurrency Course Unit (Lcc)

Universidade do Minho



A Process Algebra framework Modelling in CCS A ∼-calculus

Motivation: composition and interaction

Recall from a previous exercise
From T1 = 〈S1,N,−→1〉 and T2 = 〈S2,N,−→2〉, define

• Asynchronous composition: T1 9 T2 as (S1 × S2,N,−→), where

(s1, s2)
a−→ (s ′1, s2) ⇐ s1

a−→ s ′1

(s1, s2)
a−→ (s1, s

′
2) ⇐ s2

a−→ s ′2

• Synchronous composition: T1 9sy T2 as (S1 × S2,N × N,−→),
where

(s1, s2)
(a,b)−→ (s ′1, s

′
2) ⇐ s1

a−→ s ′1 ∧ s2
b−→ s ′2
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Motivation: composition and interaction

A process algebra, i.e. an algebra of reactive systems,

• ... is driven by a discipline of interaction

• and provides a specification notation for reactive systems
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Actions & processes

Action

• elementary unit of behaviour that can execute itself atomically in
time (no duration), after which it terminates successfully

• is a latency for interaction

α ::= τ | a | (α | α)

• a | b | · · · | z represents a collection of actions that occur at the
same time instant

• τ is the empty action, which contains no actions and as such cannot
be observed

• 〈N, |, τ〉 forms a monoid
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Actions & processes

Process
is a description of how the interaction capacities of a system evolve, i.e.,
its behaviour
for example,

E =̂ a.b + a.E

• analogy: regular expressions vs finite automata
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The framework

Process
... abstract representation of a system’s behaviour

Algebra
... a mathematical structure satisfying a particular set of axioms

Process Algebra
... a framework for the specification and manipulation of process terms as
induced by a collection of operator symbols, encompassing an operational
and an axiomatic theory
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The framework

Transition systems operational representation of system’s behaviour
through labelled graphs

Behavioural equivalences to distinguished states in transition systems

Process terms algebraic representation of transition systems (for the
purpose of mathematical reasoning)

Structural operational semantics inductive proof rules to provide each
process term with its intended transition system

Equational theory Axiomatic theory of processes, expressed in an
equational logic on process terms, that is sound and
complete wrt bisimilarity.
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Instantiating the framework

CCS: a prototypical process algebra

• Calculus of Communicating Systems [Milner, 1980]

• Actions:
Act ::= a | a | τ

for a ∈ N, N denoting a set of names

• Processes:

• No sequential composition: but action prefix a.
• No distinction between termination and deadlock (why?)
• Communication by binary handshake

(of complementary actions)
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Examples

Buffers

1-position buffer: A(in, out)=̂ in.out.0

... non terminating: B(in, out)=̂ in.out.B

... with two output ports: C (in, o1, o2)=̂ in.(o1.C + o2.C )

... non deterministic: D(in, o1, o2)=̂ in.o1.D + in.o2.D

... with parameters: B(in, out)=̂ in(x).out〈x〉.B



A Process Algebra framework Modelling in CCS A ∼-calculus

Examples

n-position buffers

1-position buffer:
S =̂ (B〈in,m〉 | B〈m, out〉)\{m}

n-position buffer:

Bn =̂ (B〈in,m1〉 | B〈m1,m2〉 | · · · | B〈mn−1, out〉)\{mi | i<n}
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Examples

mutual exclusion

Sem=̂ get.put.Sem

Pi =̂ get.ci .put.Pi

S=̂ (Sem | (|i∈I Pi ))\{get,put}
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CCS Syntax

The set P of processes is the set of all terms generated by the following
BNF:

E ::= A(x1, ..., xn) | a.E |
∑
i∈I

Ei | E0 | E1 | E\K

for a ∈ Act and K ⊆ L

Abbreviatures

E0 + E1
abv
=
∑

i∈{0,1}

Ei

0
abv
=
∑
i∈∅

Ei
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CCS Syntax

Process declaration

A(~x) =̂ EA

with fn(EA) ⊆ ~x (where fn(P) is the set of free variables of P).

• used as, e.g., A(a, b, c) =̂ a.b. 0+c .A〈d , e, f 〉

Process declaration: fixed point expression

fix (X = EX )

• syntactic substitution over P, cf.

• {c/b} a.b.0
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Semantics

Two-level semantics

• arquitectural, expresses a notion of similar assembly configurations
and is expressed through a structural congruence relation;

• behavioural given by transition rules which express how system’s
components interact
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Semantics

Structural congruence
≡ over P is given by the closure of the following conditions:

• for all A(~x)=̂ EA, A(~y) ≡ {~y/~x}EA,
(i.e., folding/unfolding preserve ≡)

• α-conversion (i.e., replacement of bounded variables).

• both | and + originate, with 0, Abelian monoids

• forall a /∈ fn(P) (P | Q)\{a} ≡ P | Q\{a}

• 0\{a} ≡ 0
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Semantics

(prefix)
a.p

a−→ p

{~k/~x} pA
a−→ p ′

(ident) (if A(~x)=̂ pA)
A(~k)

a−→ p ′

p
a−→ p ′

(sum − l)
p + q

a−→ p ′

q
a−→ q ′

(sum − r)
p + q

a−→ q ′
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Semantics

p
a−→ p ′

(par − l)
p | q

a−→ p ′ | q

q
a−→ q ′

(par − r)
p | q

a−→ p | q ′

p
a−→ p ′ q

a−→ q ′

(react)
p | q

τ−→ p ′ | q ′

p
a−→ p ′

(res) (if a /∈ {k , k})
p\{k}

a−→ p ′\{k}
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Compatibility

Lemma

Structural congruence preserves transitions:

if p
a−→ p ′ and p ≡ q there exists a process q ′ such that q

a−→ q ′ and
p ′ ≡ q ′.
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Semantics

These rules define a LTS

{
a−→ ⊆ P× P | a ∈ Act}

Relation
a−→ is defined inductively over process structure entailing a

semantic description which is

Structural i.e., each process shape (defined by the most external
combinator) has a type of transitions

Modular i.e., a process trasition is defined from transitions in its
sup-processes

Complete i.e., all possible transitions are infered from these rules

static vs dynamic combinators
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Graphical representations

Synchronization diagram

• represent interfaces of processes

• static combinators are an algebra of synchronization diagrams

Transition graph

• derivative, n-derivative, transition tree

• folds into a transition graph
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Transition tree

B=̂ in.o1.B + in.o2.B

in.o1.B + in.o2.B
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Transition graph

B=̂ in.o1.B + in.o2.B

in.o1.B + in.o2.B
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Data parameters

Language P is extended to PV over a data universe V , a set Ve of
expressions over V and a evaluation Val : Ve → V

Example
B=̂ in(x).B ′x

B ′v =̂ out〈v〉.B

• Two prefix forms: a(x).E and a〈e〉.E (actions as ports)

• Data parameters: AS(x1, ..., xn)=̂ EA, with S ∈ V and each xi ∈ L

• Conditional combinator: if b then P, if b then P1 else P2

Clearly

if b then P1 else P2
abv
= (if b then P1) + (if ¬b then P2)
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Data parameters

Additional semantic rules

(prefixi )

a(x).E
a(v)−→ {v/x}E

for v ∈ V

(prefixo)

a〈e〉.E a〈v〉−→ E
for Val(e) = v

E1
a−→ E ′

(if1)
if b then E1 else E2

a−→ E ′
for Val(b) = true

E2
a−→ E ′

(if2)
if b then E1 else E2

a−→ E ′
for Val(b) = false
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Back to P

Encoding in the basic language: T ( ) : PV −→ P

T (a(x).E ) =
∑
v∈V

av .T ({v/x}E )

T (a〈e〉.E ) = ae .T (E )

T (
∑
i∈I

Ei ) =
∑
i∈I

T (Ei )

T (E | F ) = T (E ) | T (F )

T (E\K ) = T (E )\{av | a∈K ,v∈V }

and

T (if b then E ) =

{
T (E ) if Val(b) = true

0 if Val(b) = false
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EX1: Canonical concurrent form

P=̂ (E1 | E2 | ... | En)\K

The chance machine

IO =̂ m.bank .(lost.loss.IO + rel(x).win〈x〉.IO)

Bn =̂ bank .max〈n + 1〉.left(x).Bx

Dc =̂ max(z).(lost.left〈z〉.Dc +
∑

1≤x≤z

rel〈x〉.left〈z − x〉.Dc)

Mn =̂ (IO | Bn | Dc)\{bank,max,left,lost,rel}
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EX2: Sequential patterns

1. List all states (configurations of variable assignments)

2. Define an order to capture systems’s evolution

3. Specify an expression in P to define it

A 3-bit converter

A=̂ rq.B

B=̂ out0.C + out1.odd .A

C =̂ out0.D + out1.even.A

D=̂ out0.zero.A + out1.even.A
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Processes are ’prototypical’ transition systems

... hence all definitions apply:

E ∼ F

• Processes E , F are bisimilar if there exist a bisimulation S st
{〈E ,F 〉} ∈ S .

• A binary relation S in P is a (strict) bisimulation iff, whenever
(E ,F ) ∈ S and a ∈ Act,

i) E
a−→ E ′ ⇒ F

a−→ F ′ ∧ (E ′,F ′) ∈ S

ii) F
a−→ F ′ ⇒ E

a−→ E ′ ∧ (E ′,F ′) ∈ S

I.e.,
∼ =

⋃
{S ⊆ P× P | S is a (strict) bisimulation}
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Processes are ’prototipycal’ transition systems

Example: S ∼M

T =̂ i .k .T

R=̂ k .j .R

S=̂ (T | R)\{k}

M=̂ i .τ.N

N=̂ j .i .τ.N + i .j .τ.N

through bisimulation

R ={〈S ,M)〉, 〈(k .T | R)\{k}, τ.N〉, 〈(T | j .R)\{k},N〉,
〈(k .T | j .R)\{k}, j .τ.N〉}
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Example: Semaphores

A semaphore

Sem =̂ get.put.Sem

n-semaphores

Semn =̂ Semn,0

Semn,0 =̂ get.Semn,1

Semn,i =̂ get.Semn,i+1 + put.Semn,i−1

(for 0 < i < n)

Semn,n =̂ put.Semn,n−1

Semn can also be implemented by the parallel composition of n Sem
processes:

Semn =̂ Sem | Sem | ... | Sem
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Example: Semaphores

Is Semn ∼ Semn?

For n = 2:

{〈Sem2,0,Sem | Sem〉, 〈Sem2,1,Sem | put.Sem〉,
〈Sem2,1, put.Sem | Sem〉〈Sem2,2, put.Sem | put.Sem〉}

is a bisimulation.

• but can we get rid of structurally congruent pairs?
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Bisimulation up to ≡

Definition
A binary relation S in P is a (strict) bisimulation up to ≡ iff, whenever
(E ,F ) ∈ S and a ∈ Act,

i) E
a−→ E ′ ⇒ F

a−→ F ′ ∧ (E ′,F ′) ∈ ≡ ·S· ≡

ii) F
a−→ F ′ ⇒ E

a−→ E ′ ∧ (E ′,F ′) ∈ ≡ ·S· ≡

Lemma
If S is a (strict) bisimulation up to ≡, then S ⊆ ∼

• To prove Semn ∼ Semn a bisimulation will contain 2n pairs, while a
bisimulation up to ≡ only requires n + 1 pairs.
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A ∼-calculus

Lemma E ≡ F ⇒ E ∼ F

• proof idea: show that {(E + E ,E ) | E ∈ P} ∪ IdP is a bisimulation

Lemma
(E\K )\K ′ ∼ E\(K∪K ′)

E\K ∼ E if L(E ) ∩ (K ∪ K ) = ∅

(E | F )\K ∼ E\K | F\K if L(E ) ∩ L(F ) ∩ (K ∪ K ) = ∅

• proof idea: discuss whether S is a bisimulation:

S = {(E\K ,E ) | E ∈ P∧ L(E ) ∩ (K ∪ K ) = ∅}
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∼ is a congruence

congruence is the name of modularity in Mathematics

• process combinators preserve ∼

Lemma
Assume E ∼ F . Then,

a.E ∼ a.F

E + P ∼ F + P

E | P ∼ F | P

E\K ∼ F\K

• recursive definition preserves ∼
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∼ is a congruence

• First ∼ is extended to processes with variables:

E ∼ F ≡ ∀P̃ . E [P̃/X̃ ] ∼F [P̃/X̃ ]

• Then prove:

Lemma

i) P̃=̂ Ẽ ⇒ P̃ ∼ Ẽ
where Ẽ is a family of process expressions and P̃ a family
of process identifiers.

ii) Let Ẽ ∼ F̃ , where Ẽ and F̃ are families of recursive process
expressions over a family of process variables X̃ , and
define:

Ã=̂ Ẽ [Ã/X̃ ] and B̃=̂ F̃ [B̃/X̃ ]

Then
Ã ∼ B̃
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The expansion theorem

Every process is equivalent to the sum of its derivatives

E ∼
∑

{a.E ′ | E
a−→ E ′}

understood?

E ∼
∑

{a.E ′ | E
a−→ E ′}

clear?

E ∼
∑

{a.E ′ | E a−→ E ′}
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The expansion theorem

The usual definition (based on the concurrent canonical form):

E ∼
∑

{ fi (a).(E1[f1] | ... | E ′i [fi ] | ... | En[fn])\K |

Ei
a−→ E ′i ∧ fi (a) /∈ K ∪ K }

+∑
{ τ.(E1[f1] | ... | E ′i [fi ] | ... | E ′j [fj ] | ... | En[fn])\K |

Ei
a−→ E ′i ∧ Ej

b−→ E ′j ∧ fi (a) = fj(b) }

for E =̂ (E1[f1] | ... | En[fn])\K , with n ≥ 1
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The expansion theorem

Corollary (for n = 1 and f1 = id)

(E + F )\K ∼ E\K + F\K

(a.E )\K ∼

{
0 if a ∈ (K ∪ K )

a.(E\K ) otherwise
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Example

S ∼M
S ∼ (T | R)\{k}

∼ i .(k .T | R)\{k}

∼ i .τ.(T | j .R)\{k}

∼ i .τ.(i . (k .T | j .R)\{k} +j .(T | R)\{k})

∼ i .τ.(i .j . (k .T | R)\{k} +j .i .(k .T | R)\{k})

∼ i .τ.(i .j .τ. (T | j .R)\{k} +j .i .τ.(T | j .R)\{k})

Let N ′ = (T | j .R)\{k}.
This expands into N ′ ∼ i .j .τ. (T | j .R)\{k} +j .i .τ.(T | j .R)\{k},
Therefore N ′ ∼ N and S ∼ i .τ.N ∼ M

• requires result on unique solutions for recursive process equations
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