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Bits as vectors

Classical bits, standing for Boolean values 0 and 1, can be represented by
vectors:

|0〉 =
[

1
0

]
|1〉 =

[
0
1

]
If rows are labelled from 0 onwards, the presence of 1 in a cell identifies
the number represented by the vector.

Larger state spaces are built with the (Kronecker) tensor product:

[
p0
p1

]
⊗
[
q0
q1

]
=


p0

[
q0
q1

]
p1

[
q0
q1

]
 =


p0q0
p0q1
p1q0
p1q1





Bits as vectors

Examples: Putting bits together

|00〉 = |0〉 ⊗ |0〉 =

[
1
0

]
⊗
[

1
0

]
=


1
0
0
0



|4〉 = |100〉 = |1〉 ⊗ |0〉 ⊗ |0〉 =

[
0
1

]
⊗
[

1
0

]
⊗
[

1
0

]
=



0
0
0
0
1
0
0
0





Bits as vectors, operators as matrices

I(x) = x

[
1 0
0 1

] [
0
1

]
=

[
0
1

] [
1 0
0 1

] [
1
0

]
=

[
1
0

]
X(x) = ¬x

[
0 1
1 0

] [
0
1

]
=

[
1
0

] [
0 1
1 0

] [
1
0

]
=

[
0
1

]
1(x) = 1

[
0 0
1 1

] [
0
1

]
=

[
0
1

] [
0 0
1 1

] [
1
0

]
=

[
0
1

]
0(x) = 0

[
1 1
0 0

] [
0
1

]
=

[
1
0

] [
1 1
0 0

] [
1
0

]
=

[
1
0

]
I |0〉 = |0〉 I |1〉 = |1〉
X |0〉 = |1〉 X |1〉 = |0〉
1|0〉 = |1〉 1|1〉 = |1〉
0|0〉 = |0〉 0|1〉 = |0〉



Composition

Sequential composition: matrix multiplication

Parallel composition: Kronecker product ⊗

M ⊗ N =

M1,1N · · · M1,nN
...

...
Mm,1N · · · Mm,nN


for example

X⊗1⊗I |101〉 = X⊗1⊗I (|1〉⊗|0〉⊗|1〉) = = X |1〉⊗1|0〉⊗I |1〉 = |011〉



Probabilistic bits

States: States are vectors of probabilities in Rn

[
p0 · · · pn

]T
such that

∑
i

p1 = 1

which express indeterminacy about the exact system state

Operator: Double stochastic matrix where Mi,j specifies the probability
of evolution from state j to i

Evolution: computed through matrix multiplication of an operator M
with a vector |u〉 of current probabilities, leading to the next state M |u〉.



Probabilistic bits

Measurement: the system is always in some well defined state, even if we
do not know which.

Composition:

p ⊗ q =

[
p1

1 − p1

]
⊗
[

q1
1 − q1

]
=


p1q1

p1(1 − q1)
(1 − p1)q1

(1 − p1)(1 − q1)


• correlated states: cannot be expressed as p ⊗ q, e.g.

0.5
0
0

0.5





Qubits are a different story

A quantum state holds the information of both possible classical states:

A qubit lives in a 2-dimensional complex vector space:

|v〉 = α|0〉+ β|1〉

and thus possesses a continuum of possible values, so potentially, can
store lots of classical data.

However, all this potential is hidden: when observed |v〉 collapses into a
classic state: |0〉, with probability ‖α‖2, or |1〉, with probability ‖β‖2.



Qubits are a different story

The outcome of an observation is probabilistic, which calls for a
restriction to unit vectors, i.e. st

‖α‖2 + ‖β‖2= 1

to represent quantum states.

But a superposition state is not a probabilistic mixture: it is not true that
the state is really either |u〉 or |u ′〉 and we just do not happen to know
which.

State |v〉 is a definite state, which, when measured in certain bases, gives
deterministic results, while in others it gives random results:

Amplitudes are not real numbers (e.g. probabilities) that can only
increase when added, but complex so that they can cancel each other or
lower their probability



Qubits: An experiment with a photon

|0〉 - horizontal polarization |1〉 - vertical polarization

|+〉 = 1√
2
|1〉+ 1√

2
|0〉

(from [Reifell & Polak, 2011])



Qubits: An experiment with a photon

For a beam of light there is a classical explanation in terms of waves. But
that does not work for a single photon experiment.

An explanation

• The photon’s polarization state is modelled by a unit vector, for
example |+〉 = 1√

2
|1〉+ 1√

2
|0〉, which corresponds to a polarization

of 45 degrees.

• ... or, in general, by a vector

|v〉 = α|0〉+ β|1〉

where α, β are (complex) amplitudes.

If α, β are both non-zero, |v〉 is said a superposition of |0〉 and |1〉



Qubits: An experiment with a photon

• Each polaroid has also a polarization axis.

• On passing a polaroid the photon becomes polarized in the direction
of that axis.

• The probability that a photon passes through the polaroid is the
square of the magnitude of the amplitude of its polarization in the
direction of the polaroid’s axis.

For example, if the photon is polarized as |v〉 it will go through A with
probability ‖α‖2 and be absorbed with ‖β‖2.



Qu bits: An experiment with a photon

The polarization of polaroid B is

|+〉 = 1√
2
|0〉+ 1√

2
|1〉

i.e. represented as a superposition of vectors |0〉 and |1〉



Qubits: An experiment with a photon

The photon reaches polaroid B with polarization |0〉, which is expressed
in the Hadamard basis

|+〉 = 1√
2
|0〉+ 1√

2
|1〉 |−〉 = 1√

2
|0〉− 1√

2
|1〉

as

|0〉 = 1√
2
|−〉+ 1√

2
|+〉

which explains why a visible effect appears in the wall:

the photon goes through C with 50% of probability (i.e. ‖ 1√
2
‖2= 1

2 ).



Qubits

Photon’s polarization states are represented as unit vectors in a
2-dimensional complex vector space, typically as a

non trivial linear combination ≡ superposition of vectors in a basis

|v〉 = α|0〉+ β|1〉

A basis provides an observation (or measurement) tool, e.g.

©_© = {|0〉, |1〉} or ©_© = {|+〉, |−〉}

The space of possible polarization states of a photon is an example of a qubit



Qubits

Observation of a state
|v〉 = α|u〉+ β|u ′〉

transforms the state into one of the basis vectors in

©_© = {|u〉, |u ′〉}

In other (the quantum mechanics) words:

measurement collapses |v〉 into a classic, non superimposed state:
|u〉 or |u ′〉, with probability ‖α‖2 or ‖β‖2, respectively.



Qubits

The probability that observed |v〉 collapses into |u〉 is the square of the
modulus of the amplitude of its component in the direction of |u〉, i.e.

‖α‖2

where, for a complex γ, ‖γ‖=
√
γγ

A subsequent measurement wrt the same basis returns |u〉 with
probability 1

This observation calls for a restriction to unit vectors, i.e. st

‖α‖2 + ‖β‖2= 1

to represent quantum states.



Superposition and interference

The notion of superposition is basis-dependent: all states are
superpositions with respect to some bases and not with respect to others.

But it is not a probabilistic mixture: it is not true that the state is really
either |u〉 or |u ′〉 and we just do not happen to know which.

State |v〉 is a definite state, which, when measured in certain bases, gives
deterministic results, while in others it gives random results:

The photon with polarization

|+〉 = 1√
2
|1〉+ 1√

2
|0〉

behaves deterministically when measured with respect to the Hadamard
basis but non deterministically with respect to the standard basis



Superposition and interference

In a sense |v〉 can be thought as being simultaneously in both states, but
be careful: states that are combinations of basis vectors in similar
proportions but with different amplitudes, e.g.

1√
2
(|u〉+ |u ′〉) and

1√
2
(|u〉− |u ′〉)

are distinct and behave differently in many situations.

Amplitudes are not real (e.g. probabilities) that can only increase when
added, but complex so that they can cancel each other or lower their
probability, thus capturing another fundamental quantum resource:

interference



Summing up

Any quantum system (e.g. photon polarization, electron spin, and the
ground state together with an excited state of an atom) that can be
modelled by a two-dimensional complex vector space, forms a

quantum bit (qubit)

which has a continuum of possible values.

• In practice it is not yet clear which two-state systems will be most
suitable for physical realizations of qubits: it is likely that a variety
of physical representation will be used.

• and they are fragile and unstable which entails the need for qubits’
strong isolation, typically very hard to achieve.



Summing up

A qubit has ... a continuum of possible values

• potentially, it can store lots of classical data

• but the amount of information that can be extracted from a qubit
by measurement is severely restricted: a single measurement yields
at most a single classical bit of information;

• as measurement changes the state, one cannot make two
measurements on the original state of a qubit.

• as an unknown quantum state cannot be cloned, it is not possible to
measure a qubit’s state in two ways, even indirectly by copying its
state and measuring the copy.



Summing up

Simulating a computation with qubits in a classical computer would be
extremely hard, i.e. extremely inefficient as the number of qubits
increases:

• For 100 qubits the state space would require to store 2100 ≈ 1030

complex numbers!

• And what about rotating a vector in a vector space of dimension
1030?

Moreover, there is a fundamental limitation due to Bell’s theorem. Thus,

Quantum computing as using quantum reality as a computational resource

Richard Feynman, Simulating Physics with Computers (1982)



What can be expected from quantum computation?

• The meaning of computable remains the same ...

• ... but the order of complexity may change

Factoring in polynomial time - O((ln n)3)

Peter Shor, Polynomial-Time Algorithms for Prime
Factorization and Discrete Logarithms on a Quantum Computer (1994)



What can be expected from quantum computation?

Factoring in polynomial time - O((ln n)3)

• Classically believed to be superpolynomial in log n, i.e. as n
increases the worst case time grows faster than any power of log n.

• The best classical algorithm requires approximately

e1.9(
3√
ln n 3
√

(ln ln n)2)

• From the best current estimation (the 65 digit factors of a 130 digit
number can be found in around one month in a massively parallel
computer network) one can extrapolate that to factor a 400 digit
number will take about the age of the universe (1010 years)



Computing with qubits

States: States are unit vectors of (complex) amplitudes in Cn

Operator: unitary matrix (M†M = I ). The norm squared of a unitary
matrix forms a double stochastic one.

Evolution: computed through matrix multiplication with a vector |u〉 of
current amplitudes (wave function)

• M |u〉 (next state)

• |u〉TMT (previous state)

Measurement: configuration i is observed with probability ‖αi ‖2 —
found in i , the new state will be a vector |t〉 st tj = δj,i

Composition: also by a tensor on the complex vector space; may exist
entangled states.



Some operators

The X gate

e.g.

X |0〉 =

[
0 1
1 0

] [
1
0

]
= |1〉

X (α|0〉+ β|1〉) =

[
0 1
1 0

] [
α
β

]
=

[
β
α

]



Some operators

The H gate

H =
1√
2

[
1 1
1 −1

]
The H gate creates superpositions:

H |0〉 =
1√
2

[
1 1
1 −1

] [
1
0

]
=

[
1√
2
1√
2

]
= |+〉



The Deutsch problem

Is f : 2 −→ 2 constant, with a unique evaluation?

Oracle

book-yanofsky CUUS235-Yanofsky ISBN 9780521879965 June 6, 2008 16:17 Char Count= 0

172 Algorithms

A quantum computer can be in a superposition of two basic states at the same
time. We shall use this superposition of states to evaluate both inputs at one time.

In classical computing, evaluating a given function f corresponds to performing
the following operation:

x
f

f (x)
(6.3)

As we discussed in Chapter 5, such a function can be thought of as a matrix
acting on the input. For instance, the function

0•
!

!!"
""

""
""

" •0

1•
#

""$$$$$$$$
•1

(6.4)

is equivalent to the matrix

[ 0 1
0 0 1
1 1 0

]

. (6.5)

Multiplying state |0⟩ on the right of this matrix would result in state |1⟩, and multi-
plying state |1⟩ on the right of this matrix would result in state |0⟩. The column name
is to be thought of as the input and the row name as the output.

Exercise 6.1.1 Describe the matrices for the other three functions from {0, 1} to
{0, 1}. !

However, this will not be enough for a quantum system. Such a system demands
a little something extra: every gate must be unitary (and thus reversible). Given the
output, we must be able to find the input. If f is the name of the function, then the
following black-box Uf will be the quantum gate that we shall employ to evaluate
input:

|x⟩

Uf

|x⟩

|y⟩ |y ⊕ f (x)⟩ (6.6)

The top input, |x⟩, will be the qubit value that one wishes to evaluate and the
bottom input, |y⟩, controls the output. The top output will be the same as the input
qubit |x⟩ and the bottom output will be the qubit |y ⊕ f (x)⟩, where ⊕ is XOR, the
exclusive-or operation (binary addition modulo 2.) We are going to write from left
to right the top qubit first and then the bottom. So we say that this function takes the
state |x, y⟩ to the state |x, y ⊕ f (x)⟩. If y = 0, this simplifies |x, 0⟩ to |x, 0 ⊕ f (x)⟩ =
|x, f (x)⟩. This gate can be seen to be reversible as we may demonstrate by simply

where ⊕ stands for exclusive or, i.e. addition module 2.

• The oracle takes input |x〉|y〉 to |x〉|y ⊕ f (x)〉

• Fixing y = 0 the output is |x〉|f (x)〉



The Deutsch problem

Preparing the first qubit as |x〉 is the (quantum version of) input x :

|0〉|0〉 7→ |0〉|f (0)〉
|1〉|0〉 7→ |1〉|f (1)〉

But in the quantum world, one can better: input a superposition of |0〉
and |1〉 to get

|
|0〉+ |1〉√

2
, 0〉 =

(
1√
2
|0〉+ 1√

2
|1〉
)
|0〉 =

1√
2
|0〉 |0〉+ 1√

2
|1〉 |0〉 7→ · · ·



The Deutsch problem

· · ·

Uf

(
1√
2
|0〉 |0〉+ 1√

2
|1〉 |0〉

)
=

1√
2
Uf |0〉|0〉+

1√
2
Uf |1〉|0〉

=
1√
2
|0〉|0⊕ f (0)〉+ 1√

2
|1〉|0⊕ f (1)〉

=
1√
2
|0〉|f (0)〉+ 1√

2
|1〉|f (1)〉

• The value of f on both possible inputs (0 and 1) was computed
simultaneously in superposition

• Double evaluation — the bottleneck in a classical solution — was
avoided by superposition



Is such quantum parallelism useful?

NO
Although both values have been computed simultaneously, only one of
them is retrieved upon measurement in the computational basis:
Actually, 0 or 1 will be retrieved with identical probability (why?).

YES
The Deutsch problem is not interested on the concrete values f may
take, but on a global property of f : whether it is constant or not,
technically on the value of

f (0)⊕ f (1)

The Deutsch algorithm explores another quantum resource —
interference — to obtain that global information on f



Deutsch algorithm

Idea: Avoid double evaluation by superposition and interference

The circuit computes:

|ψ1〉 =
|0〉+ |1〉√

2

|0〉− |1〉√
2

=
|00〉− |01〉+ |10〉− |11〉

2



Deutsch algorithm

After the oracle, at ψ2, one obtains

|x〉 |0⊕ f (x)〉− |1⊕ f (x)〉√
2

=

{
|x〉 |0〉−|1〉√

2
⇐ f (x) = 0

|x〉 |1〉−|0〉√
2

⇐ f (x) = 1

= (−1)f (x) |x〉 |0〉− |1〉√
2

For |x〉 a superposition:

|ψ2〉 =

(
(−1)f (0)|0〉+ (−1)f (1)|1〉√

2

) (
|0〉− |1〉√

2

)

=

(+1)
(

|0〉+|1〉√
2

) (
|0〉−|1〉√

2

) ⇐ f constant

(+1)
(

|0〉−|1〉√
2

) (
|0〉−|1〉√

2

) ⇐ f not constant



Deutsch algorithm

|ψ3〉 = H |ψ2〉

=

(+1) |0〉
(

|0〉−|1〉√
2

) ⇐ f constant

(+1) |1〉
(

|0〉−|1〉√
2

) ⇐ f not constant

To answer the original problem is now enough to measure the first qubit:
if it is in state |0〉, then f is constant.

Note
As the initial state in the second qubit can be prepared as H |1〉, the
circuit is equivalent to

(H ⊗ I )Uf (H ⊗ I )

(
|0,

|0〉− |1〉√
2
〉
)

= (H ⊗ I )Uf (H ⊗ H)(|01〉)


