Quantum Systems

(Lecture 4: Quantum algorithms — first examples and techniques)

Luís Soares Barbosa

Universidade do Minho

<ロト <四ト <注入 <注下 <注下 <

Universidade do Minho

Computing: A quantum machine

States: Given a set of possible configurations, states are unit vectors of (complex) amplitudes in C^n Operator: Unitary matrix ($M^{\dagger}M = I$). The norm squared of a unitary matrix forms a double stochastic one. Evolution: Computed through matrix multiplication with a vector $|u\rangle$ of current amplitudes (wave function)

- $M|u\rangle$ (next state)
- $|u\rangle^T M^T$ (previous state)

Measurement: Configuration *i* is observed with probability $|| \alpha_i ||^2$ if found in *i*, the new state will be a vector $|t\rangle$ st $t_j = \delta_{j,i}$ Composition: By a tensor \otimes (Kronecker product) on the complex vector space; may exist entangled states

Computing: Algorithms

Quantum algorithms

- 1. State preparation (fix initial setting)
- 2. Transformation (combination of unitary transformations)
- 3. Measurement

(projection onto a basis vector associated with a measurement tool)

What's next?

- 1. Study a number of algorithmic techniques
- 2. and their application to the development of quantum algorithms

The Deutsch-Jozsa algorithm

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The Deutsch problem (from Lecture 1)

Is $f : \mathbf{2} \longrightarrow \mathbf{2}$ constant, with a unique evaluation?

Oracle

where \oplus stands for exclusive or, i.e. addition module 2.

- The oracle takes input $|x\rangle|y
 angle$ to $|x
 angle|y\oplus f(x)
 angle$
- Fixing y = 0 the output is $|x\rangle |f(x)\rangle$

The Deutsch-Jozsa algorithm

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Is the oracle a quantum gate?

First of all, one must prove that

• The oracle is a unitary, i.e. reversible gate

 $|x\rangle|(y\oplus f(x))\oplus f(x)\rangle \ = \ |x\rangle|y\oplus (f(x)\oplus f(x))\rangle \ = \ |x\rangle|y\oplus 0\rangle \ = \ |x\rangle|y\rangle$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The Deutsch problem (from Lecture 1)

Take the first qubit $|x\rangle$ as the (quantum version of) input x:

 $egin{array}{ccc} |0
angle|0
angle &\mapsto |0
angle|f(0)
angle \ |1
angle|0
angle &\mapsto |1
angle|f(1)
angle \end{array}$

But in the quantum world, one can better: input a superposition of $|0\rangle$ and $|1\rangle$ to get

$$|\frac{|0\rangle+|1\rangle}{\sqrt{2}},0\rangle = \left(\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle\right)|0\rangle = \frac{1}{\sqrt{2}}|0\rangle|0\rangle+\frac{1}{\sqrt{2}}|1\rangle|0\rangle \mapsto \cdots$$

. . .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The Deutsch problem (from Lecture 1)

$$\begin{split} U_f\left(\frac{1}{\sqrt{2}}|0\rangle \left|0\right\rangle + \frac{1}{\sqrt{2}}|1\rangle \left|0\right\rangle\right) &= \frac{1}{\sqrt{2}}U_f|0\rangle |0\rangle + \frac{1}{\sqrt{2}}U_f|1\rangle |0\rangle \\ &= \frac{1}{\sqrt{2}}|0\rangle |0\oplus f(0)\rangle + \frac{1}{\sqrt{2}}|1\rangle |0\oplus f1\rangle \\ &= \frac{1}{\sqrt{2}}|0\rangle |f(0)\rangle + \frac{1}{\sqrt{2}}|1\rangle |f1\rangle \end{split}$$

- The value of f on both possible inputs (0 and 1) was computed simultaneously in superposition
- Double evaluation the bottleneck in a classical solution was avoided by superposition

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Is such quantum parallelism useful? (from Lecture 1)

NO

Although both values have been computed simultaneously, only one of them is retrieved upon measurement in the computational basis: Actually, 0 or 1 will be retrieved with identical probability (why?).

YES

The Deutsch problem is not interested on the concrete values f may take, but on a global property of f: whether it is constant or not, technically on the value of

 $f(0)\oplus f(1)$

The Deutsch algorithm explores another quantum resource — interference — to obtain that global information on f

イロト 不得 トイヨト イヨト

3

Deutsch algorithm (from Lecture 1)

Idea: Avoid double evaluation by superposition and interference

The circuit computes:

$$|\psi_1\rangle \;=\; \frac{|0\rangle+|1\rangle}{\sqrt{2}}\; \frac{|0\rangle-|1\rangle}{\sqrt{2}} \;=\; \frac{|00\rangle-|01\rangle+|10\rangle-|11\rangle}{2}$$

Deutsch algorithm (from Lecture 1)

After the oracle, at $\psi_2,$ one obtains

$$\begin{aligned} |x\rangle \frac{|0 \oplus f(x)\rangle - |1 \oplus f(x)\rangle}{\sqrt{2}} &= \begin{cases} |x\rangle \frac{|0\rangle - |1\rangle}{\sqrt{2}} & \Leftarrow f(x) = 0\\ |x\rangle \frac{|1\rangle - |0\rangle}{\sqrt{2}} & \Leftarrow f(x) = 1 \end{cases} \\ &= (-1)^{f(x)} |x\rangle \frac{|0\rangle - |1\rangle}{\sqrt{2}} \end{aligned}$$

For $|x\rangle$ a superposition:

$$\begin{aligned} |\Psi_2\rangle &= \left(\frac{(-1)^{f(0)}|0\rangle + (-1)^{f(1)}|1\rangle}{\sqrt{2}}\right) \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right) \\ &= \begin{cases} (\underline{+}1) \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right) \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right) & \Leftarrow f \text{ constant} \\ (\underline{+}1) \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right) \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right) & \Leftarrow f \text{ not constant} \end{cases} \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Deutsch algorithm (from Lecture 1)

$$\begin{aligned} |\Psi_3\rangle &= H |\Psi_2\rangle \\ &= \begin{cases} (\underline{+}1) |0\rangle \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right) & \Leftarrow f \text{ constant} \\ (\underline{+}1) |1\rangle \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right) & \Leftarrow f \text{ not constant} \end{cases} \end{aligned}$$

To answer the original problem is now enough to measure the first qubit: if it is in state $|0\rangle$, then f is constant.

Note

As the initial state in the second qubit can be prepared as $H|1\rangle$, the circuit is equivalent to

$(H\otimes I) \; U_f \; (H\otimes H)(|01\rangle)$

- ロ ト - 4 回 ト - 4 □ - 4

Recalling the CNOT gate

Recall its effect when applied in the Hadamard basis, e.g.

$$\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right) \, \left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) \, \mapsto \, \left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) \, \left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)$$

The phase jumps, or is kicked back, from the second to the first qubit.

The phase 'kick back' technique

This happens because $\frac{|0\rangle-|1\rangle}{\sqrt{2}}$ is an eigenvector of

- X (with $\lambda = -1$) and of I (with $\lambda = 1$)
- and, thus, $X \frac{|0\rangle |1\rangle}{\sqrt{2}} = -1 \frac{|0\rangle |1\rangle}{\sqrt{2}}$ and $I \frac{|0\rangle |1\rangle}{\sqrt{2}} = 1 \frac{|0\rangle |1\rangle}{\sqrt{2}}$

Thus,

$$\begin{aligned} \mathcal{CNOT} \left| 1 \right\rangle \left(\frac{\left| 0 \right\rangle - \left| 1 \right\rangle}{\sqrt{2}} \right) &= \left| 1 \right\rangle \left(\mathbf{X} \left(\frac{\left| 0 \right\rangle - \left| 1 \right\rangle}{\sqrt{2}} \right) \right) \\ &= \left| 1 \right\rangle \left(\left(-1 \right) \left(\frac{\left| 0 \right\rangle - \left| 1 \right\rangle}{\sqrt{2}} \right) \right) \\ &= -\left| 1 \right\rangle \left(\frac{\left| 0 \right\rangle - \left| 1 \right\rangle}{\sqrt{2}} \right) \end{aligned}$$

while
$$CNOT \ket{0} \left(\frac{\ket{0} - \ket{1}}{\sqrt{2}} \right) = \ket{0} \left(\frac{\ket{0} - \ket{1}}{\sqrt{2}} \right)$$

The phase 'kick back' technique

The phase has been kicked back to the first (control) qubit:

$$CNOT \left|i\right\rangle \left(\frac{\left|0\right\rangle - \left|1\right\rangle}{\sqrt{2}}\right) \; = \; (-1)^{i} \left|i\right\rangle \left(\frac{\left|0\right\rangle - \left|1\right\rangle}{\sqrt{2}}\right)$$

for $i \in \{0,1\}$, yielding, when the first (control) qubit is in a superposition of $|0\rangle$ and $|1\rangle$,

$$\textit{CNOT} \left(\alpha | 0 \rangle + \beta | 1 \rangle \right) \left(\frac{| 0 \rangle - | 1 \rangle}{\sqrt{2}} \right) \; = \; \left(\alpha | 0 \rangle - \beta | 1 \rangle \right) \left(\frac{| 0 \rangle - | 1 \rangle}{\sqrt{2}} \right)$$

The phase 'kick back' technique

Input an eigenvector to the target qubit of operator $\widehat{U}_{f(x)}$, and associate the eigenvalue with the state of the control qubit

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Phase 'kick back' in the Deutsch algorithm

Instead of *CNOT*, an oracle U_f for an arbitrary Boolean function $f : \mathbf{2} \longrightarrow \mathbf{2}$, presented as a controlled-gate, i.e. a 1-gate $\widehat{U}_{f(x)}$ acting on the second qubit and controlled by the state $|x\rangle$ of the first one, mapping

 $|y\rangle \mapsto |y \oplus f(x)\rangle$

The critical issue is that state $|-\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}}$ is an eigenvector of $\widehat{U}_{f(x)}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Phase 'kick back' in the Deutsch algorithm

$$\begin{split} |U_{f}|x\rangle|-\rangle &= |x\rangle\widehat{U}_{f(x)}|-\rangle \\ &= \left(\frac{|x\rangle\widehat{U}_{f(x)}|0\rangle - |x\rangle\widehat{U}_{f(x)}|1\rangle}{\sqrt{2}}\right) \\ &= \left(\frac{|x\rangle|0 \oplus f(x)\rangle - |x\rangle|1 \oplus f(x)\rangle}{\sqrt{2}}\right) \\ &= |x\rangle\left(\frac{|0 \oplus f(x)\rangle - |1 \oplus f(x)\rangle}{\sqrt{2}}\right) \\ &= |x\rangle(-1)^{f(x)}\left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right) = |x\rangle(-1)^{f(x)}|-\rangle \end{split}$$

Thus, when the control qubit is in a superposition of $|0\rangle$ and $|1\rangle$,

$$U_{f}(\alpha|0\rangle + \beta|1\rangle)\left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right) = \left((-1)^{f(0)}\alpha|0\rangle + (-1)^{f(1)}\beta|1\rangle\right)|-\rangle$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Generalizing Deutsch ...

Generalizing Deutsch's algorithm to functions whose domain is an

initial segment $N = 2^n$ of \mathbb{N} encoded into a binary string

i.e. the set of natural numbers from 0 to $\mathbf{2}^n-1$

The Deutsch-Jozsa problem

Assuming $f: 2^n \longrightarrow 2$ is either balanced or constant, determine which is the case with a unique evaluation

The oracle

The Deutsch-Jozsa algorithm

Generalizing Deutsch ...

The Deutsch circuit

The Deutsch-Joza circuit

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Deutsch-Jozsa Algorithm

The crucial step is to compute $H^{\otimes n}$ over *n* qubits:

$$\begin{aligned} H^{\otimes n} |0\rangle^{\otimes n} &= \left(\frac{1}{\sqrt{2}}\right)^n \underbrace{(|0\rangle + |1\rangle) \otimes \cdots \otimes (|0\rangle + |1\rangle)}_n \\ &= \frac{1}{\sqrt{2^n}} \sum_{\mathbf{x} \in \mathbf{2}^n} |\mathbf{x}\rangle \end{aligned}$$

Thus

$$\begin{split} \psi_0 \ &= \ |0\rangle^{\otimes n} \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right) \\ \psi_1 \ &= \ \frac{1}{\sqrt{2^n}} \sum_{\mathbf{x} \in \mathbf{2}^n} |\mathbf{x}\rangle \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right) \end{split}$$

The Deutsch-Jozsa Algorithm

The phase kick-back effect

$$\begin{split} \psi_{2} &= \frac{1}{\sqrt{2^{n}}} U_{f} \left(\sum_{\mathbf{x} \in 2^{n}} |\mathbf{x}\rangle \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}} \right) \right) \\ &= \frac{1}{\sqrt{2^{n}}} \sum_{\mathbf{x} \in 2^{n}} (-1)^{f(\mathbf{x})} |\mathbf{x}\rangle \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}} \right) \end{split}$$

◆□> ◆□> ◆三> ◆三> ・三 ・ のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Deutsch-Jozsa Algorithm

Finally, we have to compute the last stage of H^{\otimes} application.

$$|H|x\rangle = \frac{1}{\sqrt{2}}(|0\rangle + (-1)^{x}|1\rangle) = \frac{1}{\sqrt{2}}\sum_{z \in \mathbf{2}} (-1)^{xz}|z\rangle$$

$$\begin{split} H^{\otimes}|x\rangle &= H^{\otimes}(|x_1\rangle, \cdots, |x_n\rangle) \\ &= H|x_1\rangle \otimes \cdots \otimes H|x_n\rangle \\ &= \frac{1}{\sqrt{2}}(|0\rangle + (-1)^{x_1}|1\rangle) \frac{1}{\sqrt{2}}(|0\rangle + (-1)^{x_2}|1\rangle) \cdots \frac{1}{\sqrt{2}}(|0\rangle + (-1)^{x_n}|1\rangle) \\ &= \frac{1}{\sqrt{2^n}} \sum_{z_1z_2\cdots z_n \in \mathbf{2}} (-1)^{x_1z_1 + x_2z_2 + \cdots + x_nz_n} |z_1\rangle |z_2\rangle \cdots |z_n\rangle \\ &= \frac{1}{\sqrt{2^n}} \sum_{z \in \mathbf{2}^n} (-1)^{x \cdot z} |z\rangle \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Deutsch-Jozsa Algorithm

$$\begin{aligned} |\Psi_{3}\rangle &= \frac{\sum_{\mathbf{x}\in\mathbf{2}^{n}} (-1)^{f(\mathbf{x})} \sum_{\mathbf{z}\in\mathbf{2}^{n}} (-1)^{\mathbf{z}.\mathbf{x}} |\mathbf{z}\rangle}{2^{n}} \frac{|0\rangle - |1\rangle}{\sqrt{2}} \\ &= \frac{\sum_{\mathbf{x},\mathbf{z}\in\mathbf{2}^{n}} (-1)^{f(\mathbf{x})} (-1)^{\mathbf{z}.\mathbf{x}} |\mathbf{z}\rangle}{2^{n}} \frac{|0\rangle - |1\rangle}{\sqrt{2}} \\ &= \frac{\sum_{\mathbf{x},\mathbf{z}\in\mathbf{2}^{n}} (-1)^{f(\mathbf{x})+\mathbf{z}.\mathbf{x}} |\mathbf{z}\rangle}{2^{n}} \frac{|0\rangle - |1\rangle}{\sqrt{2}} \end{aligned}$$

Note that the amplitude for state $|z\rangle = |0\rangle$ is

$$\frac{1}{2^n}\sum_{\mathbf{x}\in\mathbf{2}^n}(-1)^{f(x)}$$

The Deutsch-Jozsa algorithm

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

The Deutsch-Jozsa Algorithm

Analysis

$$\begin{array}{c|c} f \text{ is constant at } 1 & \rightsquigarrow & \frac{-(2^n)|\mathbf{0}\rangle}{2^n} &= & -|\mathbf{0}\rangle \\ \hline f \text{ is constant at } 0 & \rightsquigarrow & \frac{(2^n)|\mathbf{0}\rangle}{2^n} &= & |\mathbf{0}\rangle \end{array}$$

As $|\phi_3\rangle$ has unit length, all other amplitudes must be 0 and the top qubits collapse to $|0\rangle$

$$f \text{ is balanced} \quad \rightsquigarrow \quad \frac{0|\mathbf{0}\rangle}{2^n} = 0|\mathbf{0}\rangle$$

because half of the x will cancel the other half. The top qubits collapse to some other basis state, as $|0\rangle$ has zero amplitude

The top qubits collapse to $|0\rangle$ iff f is constant

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Quantum Algorithms

The Deutsch-Jozsa algorithm: Lessons learnt

- Exponential speed up: f was evaluated once rather than $2^n 1$ times
- The quantum state encoded global properties of function f
- ... that can be extracted by exploiting cleverly such non local correlations.

Quantum Algorithms

The Deutsch-Jozsa algorithm

Exponential speed up: f was evaluated once rather than $2^n - 1$ times

Classes of quantum algorithm

- Based on the quantum Fourier transform: The Deutsch-Jozsa is a simple example; Phase estimation; Shor algorithm; etc.
- Based on amplitude amplification: Variants of Grover algorithm for search processes.
- Quantum simulation.