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Computing: A quantum machine

States: Given a set of possible configurations, states are unit vectors of
(complex) amplitudes in Cn

Operator: Unitary matrix (M†M = I ). The norm squared of a unitary
matrix forms a double stochastic one.
Evolution: Computed through matrix multiplication with a vector |u〉 of
current amplitudes (wave function)

• M |u〉 (next state)

• |u〉TMT (previous state)

Measurement: Configuration i is observed with probability ‖αi ‖2 if found
in i , the new state will be a vector |t〉 st tj = δj,i
Composition: By a tensor ⊗ (Kronecker product) on the complex vector
space; may exist entangled states
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Computing: Algorithms

Quantum algorithms

1. State preparation (fix initial setting)

2. Transformation
(combination of unitary transformations)

3. Measurement
(projection onto a basis vector associated with a measurement tool)

What’s next?

1. Study a number of algorithmic techniques

2. and their application to the development of quantum algorithms
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The Deutsch problem (from Lecture 1)

Is f : 2 −→ 2 constant, with a unique evaluation?

Oracle
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A quantum computer can be in a superposition of two basic states at the same
time. We shall use this superposition of states to evaluate both inputs at one time.

In classical computing, evaluating a given function f corresponds to performing
the following operation:

x
f

f (x)
(6.3)

As we discussed in Chapter 5, such a function can be thought of as a matrix
acting on the input. For instance, the function
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(6.4)

is equivalent to the matrix

[ 0 1
0 0 1
1 1 0

]

. (6.5)

Multiplying state |0⟩ on the right of this matrix would result in state |1⟩, and multi-
plying state |1⟩ on the right of this matrix would result in state |0⟩. The column name
is to be thought of as the input and the row name as the output.

Exercise 6.1.1 Describe the matrices for the other three functions from {0, 1} to
{0, 1}. !

However, this will not be enough for a quantum system. Such a system demands
a little something extra: every gate must be unitary (and thus reversible). Given the
output, we must be able to find the input. If f is the name of the function, then the
following black-box Uf will be the quantum gate that we shall employ to evaluate
input:

|x⟩

Uf

|x⟩

|y⟩ |y ⊕ f (x)⟩ (6.6)

The top input, |x⟩, will be the qubit value that one wishes to evaluate and the
bottom input, |y⟩, controls the output. The top output will be the same as the input
qubit |x⟩ and the bottom output will be the qubit |y ⊕ f (x)⟩, where ⊕ is XOR, the
exclusive-or operation (binary addition modulo 2.) We are going to write from left
to right the top qubit first and then the bottom. So we say that this function takes the
state |x, y⟩ to the state |x, y ⊕ f (x)⟩. If y = 0, this simplifies |x, 0⟩ to |x, 0 ⊕ f (x)⟩ =
|x, f (x)⟩. This gate can be seen to be reversible as we may demonstrate by simply

where ⊕ stands for exclusive or, i.e. addition module 2.

• The oracle takes input |x〉|y〉 to |x〉|y ⊕ f (x)〉

• Fixing y = 0 the output is |x〉|f (x)〉
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Is the oracle a quantum gate?

First of all, one must prove that

• The oracle is a unitary, i.e. reversible gate
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looking at the following circuit:

|x⟩

Uf

|x⟩

Uf

|x⟩

|y⟩ |y ⊕ f (x)⟩ |y⟩

(6.7)

State |x, y⟩ goes to |x, y ⊕ f (x)⟩, which further goes to

|x, (y ⊕ f (x)) ⊕ f (x)⟩ = |x, y ⊕ ( f (x) ⊕ f (x))⟩ = |x, y ⊕ 0⟩ = |x, y⟩, (6.8)

where the first equality is due to the associativity of ⊕ and the second equality holds
because ⊕ is idempotent. From this we see that Uf is its own inverse.

In quantum systems, evaluating f is equivalent to multiplying a state by the uni-
tary matrix Uf . For function (6.4), the corresponding unitary matrix, Uf , is

⎡

⎢⎢⎢⎣

00 01 10 11
00 0 1 0 0
01 1 0 0 0
10 0 0 1 0
11 0 0 0 1

⎤

⎥⎥⎥⎦
. (6.9)

Remember that the top column name corresponds to the input |x, y⟩ and the
left-hand row name corresponds to the outputs |x′, y′⟩. A 1 in the xy column and the
x′y′ row means that for input |x, y⟩, the output will be |x′, y′⟩.

Exercise 6.1.2 What is the adjoint of the matrix given in Equation (6.9)? Show that
this matrix is its own inverse. !

Exercise 6.1.3 Give the unitary matrices that correspond to the other three func-
tions from {0, 1} to {0, 1}. Show that each of the matrices is its own adjoint and hence
all are reversible and unitary. !

Let us remind ourselves of the task at hand. We are given such a matrix that ex-
presses a function but we cannot “look inside” the matrix to “see” how it is defined.
We are asked to determine if the function is balanced or constant.

Let us take a first stab at a quantum algorithm to solve this problem. Rather than
evaluating f twice, we shall try our trick of superposition of states. Instead of having
the top input to be either in state |0⟩ or in state |1⟩, we shall put the top input in state

|0⟩ + |1⟩
√

2
, (6.10)

which is “half-way” |0⟩ and “half-way” |1⟩. The Hadamard matrix can place a qubit
in such a state.

H|0⟩ =

⎡

⎢⎣
1√
2

1√
2

1√
2

− 1√
2

⎤

⎥⎦

⎡

⎢⎣
1

0

⎤

⎥⎦ =

⎡

⎢⎣
1√
2

1√
2

⎤

⎥⎦ = |0⟩ + |1⟩√
2

. (6.11)

|x〉|(y ⊕ f (x))⊕ f (x)〉 = |x〉|y ⊕ (f (x)⊕ f (x))〉 = |x〉|y ⊕ 0〉 = |x〉|y〉
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The Deutsch problem (from Lecture 1)

Take the first qubit |x〉 as the (quantum version of) input x :

|0〉|0〉 7→ |0〉|f (0)〉
|1〉|0〉 7→ |1〉|f (1)〉

But in the quantum world, one can better: input a superposition of |0〉
and |1〉 to get

|
|0〉+ |1〉√

2
, 0〉 =

(
1√
2
|0〉+ 1√

2
|1〉
)
|0〉 =

1√
2
|0〉 |0〉+ 1√

2
|1〉 |0〉 7→ · · ·
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The Deutsch problem (from Lecture 1)

· · ·

Uf

(
1√
2
|0〉 |0〉+ 1√

2
|1〉 |0〉

)
=

1√
2
Uf |0〉|0〉+

1√
2
Uf |1〉|0〉

=
1√
2
|0〉|0⊕ f (0)〉+ 1√

2
|1〉|0⊕ f 1〉

=
1√
2
|0〉|f (0)〉+ 1√

2
|1〉|f 1〉

• The value of f on both possible inputs (0 and 1) was computed
simultaneously in superposition

• Double evaluation — the bottleneck in a classical solution — was
avoided by superposition
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Is such quantum parallelism useful? (from Lecture 1)

NO
Although both values have been computed simultaneously, only one of
them is retrieved upon measurement in the computational basis:
Actually, 0 or 1 will be retrieved with identical probability (why?).

YES
The Deutsch problem is not interested on the concrete values f may
take, but on a global property of f : whether it is constant or not,
technically on the value of

f (0)⊕ f (1)

The Deutsch algorithm explores another quantum resource —
interference — to obtain that global information on f
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Deutsch algorithm (from Lecture 1)

Idea: Avoid double evaluation by superposition and interference

The circuit computes:

|ψ1〉 =
|0〉+ |1〉√

2

|0〉− |1〉√
2

=
|00〉− |01〉+ |10〉− |11〉

2
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Deutsch algorithm (from Lecture 1)

After the oracle, at ψ2, one obtains

|x〉 |0⊕ f (x)〉− |1⊕ f (x)〉√
2

=

{
|x〉 |0〉−|1〉√

2
⇐ f (x) = 0

|x〉 |1〉−|0〉√
2

⇐ f (x) = 1

= (−1)f (x) |x〉 |0〉− |1〉√
2

For |x〉 a superposition:

|ψ2〉 =

(
(−1)f (0)|0〉+ (−1)f (1)|1〉√

2

) (
|0〉− |1〉√

2

)

=

(+1)
(

|0〉+|1〉√
2

) (
|0〉−|1〉√

2

) ⇐ f constant

(+1)
(

|0〉−|1〉√
2

) (
|0〉−|1〉√

2

) ⇐ f not constant
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Deutsch algorithm (from Lecture 1)

|ψ3〉 = H |ψ2〉

=

(+1) |0〉
(

|0〉−|1〉√
2

) ⇐ f constant

(+1) |1〉
(

|0〉−|1〉√
2

) ⇐ f not constant

To answer the original problem is now enough to measure the first qubit:
if it is in state |0〉, then f is constant.

Note
As the initial state in the second qubit can be prepared as H |1〉, the
circuit is equivalent to

(H ⊗ I )Uf (H ⊗ H)(|01〉)
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Recalling the CNOT gate

5.2 Some Simple Quantum Gates 77

5.2.4 The Controlled-NOT and Other Singly Controlled Gates
The controlled-not gate, Cnot , acts on the standard basis for a two-qubit system, with |0⟩ and
|1⟩ viewed as classical bits, as follows: it flips the second bit if the first bit is 1 and leaves it
unchanged otherwise. The Cnot transformation has representation

Cnot = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ X

= |0⟩⟨0| ⊗ (|0⟩⟨0| + |1⟩⟨1|) + |1⟩⟨1| ⊗ (|1⟩⟨0| + |0⟩⟨1|)
= |00⟩⟨00| + |01⟩⟨01| + |11⟩⟨10| + |10⟩⟨11|,

from which it is easy to read off its effect on the standard basis elements:

Cnot : |00⟩ → |00⟩
|01⟩ → |01⟩
|10⟩ → |11⟩
|11⟩ → |10⟩.

The matrix representation (in the standard basis) for Cnot is
⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞

⎟⎟⎠ .

Observe that Cnot is unitary and is its own inverse. Furthermore, the Cnot gate cannot be
decomposed into a tensor product of two single-qubit transformations.

The importance of the Cnot gate for quantum computation stems from its ability to change
the entanglement between two qubits. For example, it takes the unentangled two-qubit state

1√
2
(|0⟩ + |1⟩)|0⟩ to the entangled state 1√

2
(|00⟩ + |11⟩):

Cnot

(
1√
2
(|0⟩ + |1⟩) ⊗ |0⟩

)
= Cnot

(
1√
2
(|00⟩ + |10⟩)

)

= 1√
2
(|00⟩ + |11⟩).

Similarly, since it is its own inverse, it can take an entangled state to an unentangled one.
The controlled-not gate is so common that it has its own graphical notation.

The open circle indicates the control bit, the × indicates negation of the target bit, and the line
between them indicates that the negation is conditional, depending on the value of the control
bit. Some authors use a solid circle to indicate negative control, in which the target bit is toggled
when the control bit is 0 instead of 1.

CNOT︷ ︸︸ ︷[
I 0
0 X

]
corresponds to the oracle: |xy〉 7→ |x , x ⊕ y〉

CNOT |0〉|ϕ〉 = |0〉I |ϕ〉
CNOT |1〉|ϕ〉 = |1〉X |ϕ〉

Recall its effect when applied in the Hadamard basis, e.g.(
|0〉+ |1〉√

2

) (
|0〉−|1〉√

2

)
7→ (

|0〉− |1〉√
2

) (
|0〉−|1〉√

2

)
The phase jumps, or is kicked back, from the second to the first qubit.
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The phase ‘kick back’ technique

This happens because |0〉−|1〉√
2

is an eigenvector of

• X (with λ = −1) and of I (with λ = 1)

• and, thus, X |0〉−|1〉√
2

= −1 |0〉−|1〉√
2

and I |0〉−|1〉√
2

= 1 |0〉−|1〉√
2

Thus,

CNOT |1〉
(
|0〉− |1〉√

2

)
= |1〉

(
X

(
|0〉− |1〉√

2

))
= |1〉

(
(−1)

(
|0〉− |1〉√

2

))
= −|1〉

(
|0〉− |1〉√

2

)

while CNOT |0〉
(

|0〉−|1〉√
2

)
= |0〉

(
|0〉−|1〉√

2

)
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The phase ‘kick back’ technique

The phase has been kicked back to the first (control) qubit:

CNOT |i〉
(
|0〉− |1〉√

2

)
= (−1)i |i〉

(
|0〉− |1〉√

2

)
for i ∈ {0, 1}, yielding, when the first (control) qubit is in a superposition
of |0〉 and |1〉,

CNOT (α|0〉+ β|1〉)
(
|0〉− |1〉√

2

)
= (α|0〉−β|1〉)

(
|0〉− |1〉√

2

)

The phase ‘kick back’ technique
Input an eigenvector to the target qubit of operator Ûf (x), and
associate the eigenvalue with the state of the control qubit
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Phase ‘kick back’ in the Deutsch algorithm

Instead of CNOT , an oracle Uf for an arbitrary Boolean function
f : 2 −→ 2, presented as a controlled-gate, i.e. a 1-gate Ûf (x) acting on
the second qubit and controlled by the state |x〉 of the first one, mapping

|y〉 7→ |y ⊕ f (x)〉

The critical issue is that state |−〉 = |0〉−|1〉√
2

is an eigenvector of Ûf (x)
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Phase ‘kick back’ in the Deutsch algorithm

Uf |x〉|−〉 = |x〉Ûf (x)|−〉

=

(
|x〉Ûf (x) |0〉− |x〉Ûf (x) |1〉√

2

)

=

(
|x〉|0⊕ f (x)〉− |x〉|1⊕ f (x)〉√

2

)
= |x〉

(
|0⊕ f (x)〉− |1⊕ f (x)〉√

2

)
= |x〉(−1)f (x)

(
|0〉− |1〉√

2

)
= |x〉(−1)f (x)|−〉

Thus, when the control qubit is in a superposition of |0〉 and |1〉,

Uf (α|0〉+ β|1〉)
(
|0〉− |1〉√

2

)
=
(
(−1)f (0)α|0〉+ (−1)f (1)β|1〉

)
|−〉



A quantum machine Recall the Deutsch problem Phase kick-back The Deutsch-Jozsa algorithm

Generalizing Deutsch ...
Generalizing Deutsch’s algorithm to functions whose domain is an

initial segment N = 2n of N encoded into a binary string

i.e. the set of natural numbers from 0 to 2n − 1

The Deutsch-Jozsa problem

Assuming f : 2n −→ 2 is either balanced or constant, determine
which is the case with a unique evaluation

The oracle
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Exercise 6.2.1 How many functions are there from {0, 1}n to {0, 1}? How many of
them are balanced? How many of them are constant? !

The Deutsch–Jozsa algorithm solves the following problem: Suppose you are
given a function from {0, 1}n to {0, 1} which you can evaluate but cannot “see” the
way it is defined. Suppose further that you are assured that the function is either
balanced or constant. Determine if the function is balanced or constant. Notice that
when n = 1, this is exactly the problem that the Deutsch algorithm solved.

Classically, this algorithm can be solved by evaluating the function on different
inputs. The best case scenario is when the first two different inputs have different
outputs, which assures us that the function is balanced. In contrast, to be sure that
the function is constant, one must evaluate the function on more than half the pos-
sible inputs. So the worst case scenario requires 2n

2 + 1 = 2n−1 + 1 function evalua-
tions. Can we do better?

In the last section, we solved the problem by entering into a superposition of two
possible input states. In this section, we solve the problem by entering a superposi-
tion of all 2n possible input states.

The function f will be given as a unitary matrix that we shall depict as

|x⟩
/n

Uf

/n
|x⟩

|y⟩ | f (x) ⊕ y⟩ (6.44)

with n qubits (denoted as /n ) as the top input and output. For the rest of
this chapter, a binary string is denoted by a boldface letter. So we write the top input
as |x⟩ = |x0x1 . . . xn−1⟩. The bottom entering control qubit is |y⟩. The top output is
|x⟩ which will not be changed by Uf . The bottom output of Uf is the single qubit
|y ⊕ f (x)⟩. Remember that although x is n bits, f (x) is one bit and hence we can use
the binary operation ⊕. It is not hard to see that Uf is its own inverse.

Example 6.2.1 Consider the following balanced function from {0, 1}2 to {0, 1}:

00•!

!!"
""

""
""

""
""

""
""

01•
#

""$$
$$

$$
$$

•0

10•
%

##&&&&&&&&
•1

11•
'

$$(((((((((((((((

(6.45)
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Generalizing Deutsch ...
The Deutsch circuit

The Deutsch-Joza circuit
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The Deutsch-Jozsa Algorithm

The crucial step is to compute H⊗n over n qubits:

H⊗n|0〉⊗n =

(
1√
2

)n

(|0〉+ |1〉)⊗ · · · ⊗ (|0〉+ |1〉)︸ ︷︷ ︸
n

=
1√
2n

∑
x∈2n

|x〉

Thus

ψ0 = |0〉⊗n
(
|0〉− |1〉√

2

)
ψ1 =

1√
2n

∑
x∈2n

|x〉
(
|0〉− |1〉√

2

)
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The Deutsch-Jozsa Algorithm

The phase kick-back effect

ψ2 =
1√
2n

Uf

(∑
x∈2n

|x〉
(
|0〉− |1〉√

2

))

=
1√
2n

∑
x∈2n

(−1)f (x)|x〉
(
|0〉− |1〉√

2

)
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The Deutsch-Jozsa Algorithm

Finally, we have to compute the last stage of H⊗ application.

H |x〉 =
1√
2
(|0〉+ (−1)x |1〉) =

1√
2

∑
z∈2

(−1)xz |z〉

H⊗|x〉 = H⊗(|x1〉, · · · , |xn〉)
= H |x1〉 ⊗ · · · ⊗ H |xn〉

=
1√
2
(|0〉+ (−1)x1 |1〉) 1√

2
(|0〉+ (−1)x2 |1〉) · · · 1√

2
(|0〉+ (−1)xn |1〉)

=
1√
2n

∑
z1z2···zn∈2

(−1)x1z1+x2z2+···+xnzn |z1〉|z2〉 · · · |zn〉

=
1√
2n

∑
z∈2n

(−1)x.z |z〉
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The Deutsch-Jozsa Algorithm

|ψ3〉 =

∑
x∈2n (−1)f (x)

∑
z∈2n (−1)z.x|z〉

2n

|0〉− |1〉√
2

=

∑
x,z∈2n (−1)f (x)(−1)z.x|z〉

2n

|0〉− |1〉√
2

=

∑
x,z∈2n (−1)f (x)+z.x|z〉

2n

|0〉− |1〉√
2

Note that the amplitude for state |z〉 = |0〉 is

1

2n

∑
x∈2n

(−1)f (x)
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The Deutsch-Jozsa Algorithm

Analysis

f is constant at 1  −(2n)|0〉
2n = −|0〉

f is constant at 0  (2n)|0〉
2n = |0〉

As |ϕ3〉 has unit length, all other amplitudes must be 0 and the top
qubits collapse to |0〉

f is balanced  0|0〉
2n = 0|0〉

because half of the x will cancel the other half. The top qubits collapse
to some other basis state, as |0〉 has zero amplitude

The top qubits collapse to |0〉 iff f is constant
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Quantum Algorithms

The Deutsch-Jozsa algorithm: Lessons learnt

• Exponential speed up: f was evaluated once rather than 2n − 1
times

• The quantum state encoded global properties of function f

• ... that can be extracted by exploiting cleverly such non local
correlations.
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Quantum Algorithms

The Deutsch-Jozsa algorithm
Exponential speed up: f was evaluated once rather than 2n − 1 times

Classes of quantum algorithm

• Based on the quantum Fourier transform: The Deutsch-Jozsa is a
simple example; Phase estimation; Shor algorithm; etc.

• Based on amplitude amplification: Variants of Grover algorithm for
search processes.

• Quantum simulation.
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