Interaction and Concurrency

Module 1: Reactive Systems Problems 1 and 2

Until next 22 April 2024, please provide a complete, individual answer and quote suitably any reference (paper, book, software) used.

Problem 1

Consider the following junction where traffic is controlled by three traffic lights (processes A_{1}, A_{2} and A_{1}):

1. The traffic controller

$$
\mathrm{T} \widehat{=} \mathrm{C}\left|A_{1}\right| A_{2} \mid A_{3}
$$

consists of three copies A_{1}, A_{2} and A_{3} of a process traffic light L, in parallel with a control process C. Process L enforces the usual infinite loop behaviour of a traffic light showing green, followed by yellow and then red, in cycle. Process C ensures that the green light is activated first in A_{1}, then in A_{2} and finally in A_{3}, in a loop, avoiding any clashes. Specify processes L and C.
2. Use MCRL2 to draw the transition system of process T. What more can you do with MCRL2 to analyse the behaviour of process T ?
3. Apply once the expansion theorem to process T. Comment the result you obtained.

Problem 2

Recall the observable transition relation $\xlongequal{x} \subseteq \mathbb{P} \times \mathbb{P}$, where $x \in \operatorname{L}=($ Act $-\{\tau\}) \cup\{\epsilon\}$. As discussed in the lectures, $\mathrm{a} \xlongequal{\epsilon}$-transition corresponds to zero or more transitions through an unobservable action τ.

Consider two new modal operators that express, respectively, the possibility and the need for a property to be valid after performing an arbitrary amount of unobservable behaviour.

$$
\begin{aligned}
& E \models\left\rangle \phi \quad \text { iff } \quad \exists_{F \in\left\{E^{\prime} \mid E\right.} \stackrel{\epsilon}{\Rightarrow} E^{\prime}\right\}, F \models \phi \\
& E \models \llbracket \rrbracket \phi \quad \text { iff } \quad \forall_{F \in\left\{E^{\prime} \mid E \xlongequal{\epsilon} \underset{E^{\prime}}{ }\right\}} . F \models \phi
\end{aligned}
$$

By abbreviation we can now define the "observable versions" of $\langle K\rangle$ e $[K]$, for $K \subseteq L$. Thus,

$$
\begin{aligned}
& \langle\mathrm{K}\rangle \phi \stackrel{\text { abv }}{=}\rangle\langle\mathrm{K}\rangle\rangle\rangle \phi \\
& \llbracket \mathrm{K} \rrbracket \phi \stackrel{\text { abv }}{=} \llbracket \rrbracket[\mathrm{K}] \llbracket \rrbracket \phi
\end{aligned}
$$

1. Explain the meaning of formulas \langle fdee \rangle true and $\llbracket-\rrbracket$ false. Illustrate their use through the specification of four different, non-bisimilar processes such that $\langle\mathrm{fdee}\rangle$ true holds in two of them and $\llbracket-\rrbracket$ false in the other two.
2. In the logic you have studied in the lectures, formula

$$
\langle-\rangle \text { true } \wedge[-a] \text { false }
$$

expresses inevitability, i.e. the occurrence of action a is inevitable. Which of the formulas
(a) $《-\rangle$ true $\wedge \llbracket-a \rrbracket$ false
(b) $\llbracket \rrbracket 《-\rangle$ true $\wedge \llbracket-a \rrbracket$ false
if any, would express a similar property in the observational setting? Justify your answer. If none seems suitable, provide an alternative specification.
3. In the lectures, you have studied a close relationship between bisimilarity and modal equivalence for the logic then introduced. Discuss in some detail if and how a similar result holds relating observational equivalence and modal equivalence for the extended logic.

