Observational Equivalence

Luís Soares Barbosa

Interaction \＆Concurrency Course Unit（Lcc）

Universidade do Minho

Observable transitions

$$
\xlongequal{a} \subseteq \mathbb{P} \times \mathbb{P}
$$

- $L \cup\{\epsilon\}$
- $A \xlongequal{\epsilon}$-transition corresponds to zero or more non observable transitions
- inference rules for \xlongequal{a} :

$$
\begin{array}{r}
E \stackrel{\epsilon}{\Longrightarrow} E \\
\\
\stackrel{\left.E \xrightarrow{\tau} E^{\prime}\right)}{E \xlongequal{\epsilon} E^{\prime} \stackrel{\epsilon}{\Longrightarrow} F}\left(O_{2}\right) \\
E \stackrel{\epsilon}{\Longrightarrow} E^{\prime} \stackrel{E^{\prime} \xrightarrow{a} F^{\prime} \quad F^{\prime} \stackrel{\epsilon}{\Longrightarrow} F}{E \xrightarrow{a} F}\left(O_{3}\right) \quad \text { for } a \in L
\end{array}
$$

Example

$$
\begin{aligned}
& T_{0} \hat{=} j . T_{1}+i . T_{2} \\
& T_{1} \hat{=} i . T_{3} \\
& T_{2} \hat{=} j . T_{3} \\
& T_{3} \hat{=} \tau . T_{0}
\end{aligned}
$$

and

$$
A \widehat{=} i . j . A+j . i . A
$$

Example

From their graphs,

and

we conclude that $T_{0} \nsim A$ (why?).

Observational equivalence

$E \approx F$

- Processes E, F are observationally equivalent if there exists a weak bisimulation S st $\{\langle E, F\rangle\} \in S$.
- A binary relation S in \mathbb{P} is a weak bisimulation iff, whenever $(E, F) \in S$ and $a \in L \cup\{\epsilon\}$,
i) $E \xrightarrow{a} E^{\prime} \Rightarrow F \xrightarrow{a} F^{\prime} \wedge\left(E^{\prime}, F^{\prime}\right) \in S$
ii) $F \stackrel{a}{\Longrightarrow} F^{\prime} \Rightarrow E \xlongequal{a} E^{\prime} \wedge\left(E^{\prime}, F^{\prime}\right) \in S$
I.e.,

$$
\approx=\bigcup\{S \subseteq \mathbb{P} \times \mathbb{P} \mid S \text { is a weak bisimulation }\}
$$

Observational equivalence

Properties

- as expected: \approx is an equivalence relation
- basic property: for any $E \in \mathbb{P}$,

$$
E \approx \tau . E
$$

(proof idea: $\operatorname{id}_{\mathbb{P}} \cup\{(E, \tau . E) \mid E \in \mathbb{P}\}$ is a weak bisimulation

- weak vs. strict:

$$
\sim \subseteq \approx
$$

Is \approx a congruence?

Lemma
Let $E \approx F$. Then, for any $P \in \mathbb{P}$ and $K \subseteq L$,

$$
\begin{aligned}
a . E & \approx a . F \\
E \mid P & \approx F \mid P \\
E \backslash_{K} & \approx F \backslash_{K}
\end{aligned}
$$

Is \approx a congruence?

Lemma
Let $E \approx F$. Then, for any $P \in \mathbb{P}$ and $K \subseteq L$,

$$
\begin{gathered}
a . E \approx a . F \\
E|P \approx F| P \\
E \backslash_{K} \approx F \backslash_{K}
\end{gathered}
$$

but

$$
E+P \approx F+P
$$

does not hold, in general.

Is \approx a congruence?

Example (initial τ restricts options 'menu')

$$
i .0 \approx \tau . i .0
$$

However

$$
j .0+i .0 \not \approx j .0+\tau . i .0
$$

Actually,

Is \approx a congruence?

Example (initial τ restricts options 'menu')

$$
i .0 \approx \tau . i .0
$$

However

$$
j .0+i .0 \not \approx j .0+\tau . i .0
$$

Actually,

Forcing a congruence: $E=F$

Solution: force any initial τ to be matched by another τ

Process equality

Two processes E and F are equal (or observationally congruent) iff
i) $E \approx F$
ii) $E \xrightarrow{\tau} E^{\prime} \Rightarrow F \xrightarrow{\tau} X \xrightarrow{\epsilon} F^{\prime}$ and $E^{\prime} \approx F^{\prime}$
iii) $F \xrightarrow{\tau} F^{\prime} \Rightarrow E \xrightarrow{\tau} X \xrightarrow{\epsilon} E^{\prime}$ and $E^{\prime} \approx F^{\prime}$

Forcing a congruence: $E=F$

Solution: force any initial τ to be matched by another τ

Process equality

Two processes E and F are equal (or observationally congruent) iff
i) $E \approx F$
ii) $E \xrightarrow{\tau} E^{\prime} \Rightarrow F \xrightarrow{\tau} X \xrightarrow{\epsilon} F^{\prime}$ and $E^{\prime} \approx F^{\prime}$
iii) $F \xrightarrow{\tau} F^{\prime} \Rightarrow E \xrightarrow{\tau} X \xrightarrow{\epsilon} E^{\prime}$ and $E^{\prime} \approx F^{\prime}$

- note that $E \neq \tau . E$, but $\tau . E=\tau . \tau . E$

Forcing a congruence: $E=F$

$=$ can be regarded as a restriction of \approx to all pairs of processes which preserve it in additive contexts

Lemma

Let E and F be processes st the union of their sorts is distinct of L. Then,

$$
E=F \equiv \forall_{G \in \mathbb{P}} \cdot(E+G \approx F+G)
$$

Properties of $=$

Lemma

$$
E \approx F \equiv(E=F) \vee(E=\tau . F) \vee(\tau . E=F)
$$

- note that $E \neq \tau . E$, but $\tau . E=\tau . \tau . E$

Properties of $=$

Lemma

$$
\sim \subseteq=\subseteq \approx
$$

So,

$$
\text { the whole } \sim \text { theory remains valid }
$$

Additionally,
Lemma (additional laws)

$$
\begin{aligned}
a \cdot \tau . E & =a \cdot E \\
E+\tau \cdot E & =\tau \cdot E \\
a .(E+\tau . F) & =a \cdot(E+\tau \cdot F)+a . F
\end{aligned}
$$

Solving equations

$$
\text { Have equations over }(\mathbb{P}, \sim) \text { or }(\mathbb{P},=) \text { (unique) solutions? }
$$

Lemma
Recursive equations $\tilde{X}=\tilde{E}(\tilde{X})$ or $\tilde{X} \sim \tilde{E}(\tilde{X})$, over \mathbb{P}, have unique solutions (up to $=$ or \sim, respectively). Formally,
i) Let $\tilde{E}=\left\{E_{i} \mid i \in I\right\}$ be a family of expressions with a maximum of I free variables $\left(\left\{X_{i} \mid i \in I\right\}\right)$ such that any variable free in E_{i} is weakly guarded. Then
ii) Let $\tilde{E}=\left\{E_{i} \mid i \in I\right\}$ be a family of expressions with a maximum of I free variables $\left(\left\{X_{i} \mid i \in I\right\}\right)$ such that any variable free in E_{i} is guarded and sequential. Then

$$
\tilde{P}=\{\tilde{P} / \tilde{X}\} \tilde{E} \wedge \tilde{Q}=\{\tilde{Q} / \tilde{X}\} \tilde{E} \Rightarrow \tilde{P}=\tilde{Q}
$$

Solving equations

$$
\text { Have equations over }(\mathbb{P}, \sim) \text { or }(\mathbb{P},=) \text { (unique) solutions? }
$$

Lemma
Recursive equations $\tilde{X}=\tilde{E}(\tilde{X})$ or $\tilde{X} \sim \tilde{E}(\tilde{X})$, over \mathbb{P}, have unique solutions (up to $=$ or \sim, respectively). Formally,
i) Let $\tilde{E}=\left\{E_{i} \mid i \in I\right\}$ be a family of expressions with a maximum of I free variables ($\left\{X_{i} \mid i \in I\right\}$) such that any variable free in E_{i} is weakly guarded. Then

$$
\tilde{P} \sim\{\tilde{P} / \tilde{X}\} \tilde{E} \wedge \tilde{Q} \sim\{\tilde{Q} / \tilde{X}\} \tilde{E} \Rightarrow \tilde{P} \sim \tilde{Q}
$$

$\tilde{P}=\{\tilde{P} / \tilde{X}\} \tilde{E}$

$$
\tilde{Q}=\{\tilde{Q} / \tilde{X}\} \tilde{E}
$$

Solving equations

$$
\text { Have equations over }(\mathbb{P}, \sim) \text { or }(\mathbb{P},=) \text { (unique) solutions? }
$$

Lemma

Recursive equations $\tilde{X}=\tilde{E}(\tilde{X})$ or $\tilde{X} \sim \tilde{E}(\tilde{X})$, over \mathbb{P}, have unique solutions (up to $=$ or \sim, respectively). Formally,
i) Let $\tilde{E}=\left\{E_{i} \mid i \in I\right\}$ be a family of expressions with a maximum of I free variables ($\left\{X_{i} \mid i \in I\right\}$) such that any variable free in E_{i} is weakly guarded. Then

$$
\tilde{P} \sim\{\tilde{P} / \tilde{X}\} \tilde{E} \wedge \tilde{Q} \sim\{\tilde{Q} / \tilde{X}\} \tilde{E} \Rightarrow \tilde{P} \sim \tilde{Q}
$$

ii) Let $\tilde{E}=\left\{E_{i} \mid i \in I\right\}$ be a family of expressions with a maximum of I free variables ($\left\{X_{i} \mid i \in I\right\}$) such that any variable free in E_{i} is guarded and sequential. Then

$$
\tilde{P}=\{\tilde{P} / \tilde{X}\} \tilde{E} \wedge \tilde{Q}=\{\tilde{Q} / \tilde{X}\} \tilde{E} \Rightarrow \tilde{P}=\tilde{Q}
$$

Conditions on variables

guarded :
X occurs in a sub-expression of type $a . E^{\prime}$ for $a \in A c t-\{\tau\}$
weakly guarded :
X occurs in a sub-expression of type $a . E^{\prime}$ for $a \in A c t$
in both cases assures that, until a guard is reached, behaviour does not depends on the process that instantiates the variable

Conditions on variables

guarded :
X occurs in a sub-expression of type $a . E^{\prime}$ for $a \in A c t-\{\tau\}$
weakly guarded :
X occurs in a sub-expression of type $a . E^{\prime}$ for $a \in A c t$
in both cases assures that, until a guard is reached, behaviour does not depends on the process that instantiates the variable
example: X is weakly guarded in both $\tau . X$ and $\tau .0+a . X+b . a . X$ but guarded only in the second

Conditions on variables

sequential :

X is sequential in E if every strict sub-expression in which X occurs is either $a . E^{\prime}$, for $a \in A c t$, or $\sum \tilde{E}$.

Conditions on variables

sequential :

X is sequential in E if every strict sub-expression in which X occurs is either $a . E^{\prime}$, for $a \in A c t$, or $\sum \tilde{E}$.
avoids X to become guarded by a τ as a result of an interaction
example: X is not sequential in $X=(\bar{a} . X \mid a .0) \backslash_{\{a\}}$

Example (1)

Consider

$$
\begin{aligned}
\text { Sem } & \widehat{=} \text { get.put.Sem } \\
P_{1} & \widehat{=} \overline{g e t} \cdot c_{1} \cdot \overline{p u t} \cdot P_{1} \\
P_{2} & \widehat{=} \overline{g e t} \cdot c_{2} \cdot \overline{p u t} \cdot P_{2} \\
S & \widehat{=}\left(\text { Sem }\left|P_{1}\right| P_{2}\right) \backslash_{\{\text {get }, \text { put }\}}
\end{aligned}
$$

and

$$
S^{\prime} \widehat{=} \tau \cdot c_{1} \cdot S^{\prime}+\tau \cdot c_{2} \cdot S^{\prime}
$$

Example (1)

Consider

$$
\begin{aligned}
\text { Sem } & \hat{=} \text { get.put.Sem } \\
P_{1} & =\overline{\text { get. }} \cdot c_{1} \cdot \overline{\text { put. }} \cdot P_{1} \\
P_{2} & =\overline{\text { get. }} c_{2} \cdot \overline{\text { put. }} P_{2} \\
S & \left.=\left(\operatorname{Sem}\left|P_{1}\right| P_{2}\right) \backslash_{\{g e t, p u t\}}\right\}
\end{aligned}
$$

and

$$
S^{\prime} \widehat{=} \tau \cdot c_{1} \cdot S^{\prime}+\tau \cdot c_{2} \cdot S^{\prime}
$$

to prove $S \sim S^{\prime}$, show both are solutions of

$$
X=\tau \cdot c_{1} \cdot X+\tau \cdot c_{2} \cdot X
$$

Example (1)

proof

$$
\begin{aligned}
& S=\tau .\left(c_{1} \cdot \overline{\text { put }} . P_{1}\left|P_{2}\right| \text { put.Sem }\right) \backslash_{K}+\tau .\left(P_{1}\left|c_{2} \cdot \overline{p u t} . P_{2}\right| \text { put.Sem }\right) \backslash_{K} \\
& =\tau . c_{1} \cdot\left(\overline{p u t} . P_{1}\left|P_{2}\right| \text { put.Sem }\right) \backslash_{K}+\tau . c_{2} \cdot\left(P_{1}\left|\overline{p u t} . P_{2}\right| \text { put.Sem }\right) \backslash_{K} \\
& =\tau . c_{1} . \tau .\left(P_{1}\left|P_{2}\right| \text { Sem }\right) \backslash_{k}+\tau . c_{2} \cdot \tau .\left(P_{1}\left|P_{2}\right| \text { Sem }\right) \backslash_{K} \\
& =\tau \cdot c_{1} \cdot \tau \cdot S+\tau \cdot c_{2} \cdot \tau \cdot S \\
& =\tau . c_{1} \cdot S+\tau . c_{2} \cdot S \\
& =\{S / X\} E
\end{aligned}
$$

for S^{\prime} is immediate

Example (2)

Consider,

$$
\begin{array}{ll}
B \widehat{=} \text { in. } B_{1} & B^{\prime} \hat{=}\left(C_{1} \mid C_{2}\right) \backslash_{m} \\
B_{1} \hat{=} \text { in. } B_{2}+\overline{\text { out }} \cdot B & C_{1} \hat{=} \text { in. } \bar{m} \cdot C_{1} \\
B_{2} \widehat{=} \overline{\text { out }} \cdot B_{1} & C_{2} \hat{=} \text { m. } \overline{\text { out }} \cdot C_{2}
\end{array}
$$

B^{\prime} is a solution of

$$
\begin{aligned}
& X=E(X, Y, Z)=\text { in. } Y \\
& Y=E_{1}(X, Y, Z)=\text { in. } Z+\overline{o u t} . X \\
& Z=E_{3}(X, Y, Z)=\overline{o u t} . Y
\end{aligned}
$$

through $\sigma=\left\{B / X, B_{1} / Y, B_{2} / Z\right\}$

Example (2)

To prove $B=B^{\prime}$

$$
\begin{aligned}
B^{\prime} & =\left(C_{1} \mid C_{2}\right) \backslash_{m} \\
& =\text { in. }\left(\bar{m} \cdot C_{1} \mid C_{2}\right) \backslash_{m} \\
& =\text { in. } \tau .\left(C_{1} \mid \overline{\text { out. }} C_{2}\right) \backslash_{m} \\
& =\operatorname{in} \cdot\left(C_{1} \mid \overline{\text { out }} \cdot C_{2}\right) \backslash_{m}
\end{aligned}
$$

Let $S_{1}=\left(C_{1} \mid \overline{\text { out. }} C_{2}\right) \backslash_{m}$ to proceed:

$$
\begin{aligned}
S_{1} & =\left(C_{1} \mid \overline{o u t} . C_{2}\right) \backslash_{m} \\
& =\text { in. }\left(\bar{m} \cdot C_{1} \mid \overline{o u t} . C_{2}\right) \backslash_{m}+\overline{o u t} .\left(C_{1} \mid C_{2}\right) \backslash_{m} \\
& =\text { in. }\left(\bar{m} \cdot C_{1} \mid \overline{o u t} . C_{2}\right) \backslash_{m}+\overline{\text { out }} \cdot B^{\prime}
\end{aligned}
$$

Example (2)

Finally, let, $S_{2}=\left(\bar{m} . C_{1} \mid \overline{\text { out }} . C_{2}\right) \backslash_{m}$. Then,

$$
\begin{aligned}
S_{2} & =\left(\bar{m} \cdot C_{1} \mid \overline{o u t} . C_{2}\right) \backslash_{m} \\
& =\overline{\text { out. }}\left(\bar{m} \cdot C_{1} \mid C_{2}\right) \backslash_{m} \\
& =\overline{\overline{o u t}} \cdot \tau \cdot\left(C_{1} \mid \overline{o u t} . C_{2}\right) \backslash_{m} \\
& =\overline{\text { out. } \tau . S_{1}} \\
& =\overline{o u t} \cdot S_{1}
\end{aligned}
$$

Example (2)

Note the same problem can be solved with a system of 2 equations:

$$
\begin{aligned}
& X=E(X, Y)=\text { in. } Y \\
& Y=E^{\prime}(X, Y)=\text { in. } \overline{o u t} . Y+\overline{\text { out.in. } Y}
\end{aligned}
$$

Clearly, by substitution,

$$
\begin{aligned}
B & =\text { in. } B_{1} \\
B_{1} & =\text { in.out. } B_{1}+\overline{\text { out. }} . \mathrm{in} . B_{1}
\end{aligned}
$$

Example (2)

On the other hand, it's already proved that $B^{\prime}=\ldots=i n . S_{1}$. so,

$$
\begin{aligned}
S_{1} & =\left(C_{1} \mid \overline{o u t} \cdot C_{2}\right) \backslash_{m} \\
& =\text { in. }\left(\bar{m} \cdot C_{1} \mid \overline{o u t} . C_{2}\right) \backslash_{m}+\overline{o u t} . B^{\prime} \\
& =\text { in. } \overline{o u t} \cdot\left(\bar{m} \cdot C_{1} \mid C_{2}\right) \backslash_{m}+\overline{o u t} . B^{\prime} \\
& =\text { in. } \overline{o u t} \cdot \tau \cdot\left(C_{1} \mid \overline{o u t} . C_{2}\right) \backslash_{m}+\overline{o u t} . B^{\prime} \\
& =\text { in. } \overline{o u t} \cdot \tau \cdot S_{1}+\overline{o u t} . B^{\prime} \\
& =\text { in. } \overline{o u t} \cdot S_{1}+\overline{o u t} . B^{\prime} \\
& =\text { in. } \overline{o u t} \cdot S_{1}+\overline{o u t} . i n . S_{1}
\end{aligned}
$$

Hence, $B^{\prime}=\left\{B^{\prime} / X, S_{1} / Y\right\} E$ and $S_{1}=\left\{B^{\prime} / X, S_{1} / Y\right\} E^{\prime}$

