Quantum Systems

(Lecture 2: Computing with qubits. The Deutsch algorithm)

Luís Soares Barbosa

Universidade do Minho

HASLab
HIGFASSURANCE
SOFTWARE LABORGTOAY

Universidade do Minho

Computing with qubits

State: A unit vectors of (complex) amplitudes in \mathbb{C}^{n}
Operator: A unitary matrix ($M^{\dagger} M=I$).
Why unitary?
because the norm squared of a unitary matrix forms a double stochastic one.

Some operators

The X gate

e.g.

$$
\begin{aligned}
& X|0\rangle=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=|1\rangle \\
& X(\alpha|0\rangle+\beta|1\rangle)=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=\left[\begin{array}{l}
\beta \\
\alpha
\end{array}\right]
\end{aligned}
$$

Some operators

The H gate

$$
H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

The H gate creates superpositions:

$$
H|0\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]=|+\rangle
$$

My first quantum algorithm

The Deutsch problem

Decide whether

$$
f: \mathbf{2} \longrightarrow \mathbf{2}
$$

is constant or not, with a single evaluation of f ?

- Classically, to determine which case $f(1)=f(0)$ or $f(1) \neq f(0)$ holds requires running f twice
- Resorting to quantum computation, however, it suffices to run f once . . . due to two quantum effects superposition and interference

Turning f into a quantum operation

$f: \mathbf{2} \longrightarrow \mathbf{2}$ extends to a linear map $\mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$
... but not necessarily to a unitary transformation.

proof

The extended f does not preserve norms: Actually, when f is constant on 0 we obtain $f|0\rangle=|0\rangle$ and $f|1\rangle=|0\rangle$.
Thus,

$$
\left|\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)\right|=1
$$

However,

$$
\left.\left\lvert\, f\left(\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)\right)\left|=\left|\frac{1}{\sqrt{2}}(|0\rangle+|0\rangle)\right|=\left|\frac{2}{\sqrt{2}}\right| 0\right\rangle\right. \right\rvert\,=\frac{2}{\sqrt{2}}
$$

Turning f into a quantum operation

Intuition

f potentially loses information whereas pure quantum operations are reversible [Charles Bennett, 1973]

Actually, a unitary transformation is always injective so if a map loses information it cannot be unitary.

Turning f into a quantum operation

Proposed Solution

Addition modulo 2

- The oracle takes input $|x\rangle|y\rangle$ to $|x\rangle|y \oplus f(x)\rangle$
- Fixing $y=0$ it encodes f :

$$
U_{f}(|x\rangle \otimes|0\rangle)=|x\rangle \otimes|0 \oplus f(x)\rangle=|x\rangle \otimes|f(x)\rangle
$$

Turning f into a quantum operation

- U_{f} is a unitary, i.e. a reversible gate

$$
|x\rangle|(y \oplus f(x)) \oplus f(x)\rangle=|x\rangle|y \oplus(f(x) \oplus f(x))\rangle=|x\rangle|y \oplus 0\rangle=|x\rangle|y\rangle
$$

Exploiting quantum parallelism

Can f be evaluated for $|0\rangle$ and $|1\rangle$ in one step?

Consider the following circuit

$$
\begin{aligned}
& U_{f}(H \otimes I)(|0\rangle \otimes|0\rangle) \\
& =U_{f}\left(\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes|0\rangle\right) \\
& =U_{f}\left(\frac{1}{\sqrt{2}}(|00\rangle+|10\rangle)\right) \\
& =\frac{1}{\sqrt{2}}(|0\rangle|0 \oplus f(0)\rangle+|1\rangle|0 \oplus f(1)\rangle) \\
& =\underbrace{\frac{1}{\sqrt{2}}}_{f(0) \text { and } f(1) \text { in a single run }}(|0\rangle|f(0)\rangle+|1\rangle|f(1)\rangle)
\end{aligned}
$$

\{Defn. of H and I \}
$\{\otimes$ distributes over +$\}$
$\left\{\right.$ Defn. of $\left.U_{f}\right\}$
$\{0 \oplus x=x\}$

Are we done?

$$
U_{f}(H \otimes I)(|0\rangle \otimes|0\rangle)=\underbrace{\frac{1}{\sqrt{2}}(|0\rangle|f(0)\rangle+|1\rangle|f(1)\rangle)}_{f(0) \text { and } f(1) \text { in a single run }}
$$

NO
Although both values have been computed simultaneously, only one of them is retrieved upon measurement in the computational basis: Actually, 0 or 1 will be retrieved with identical probability (why?).

YES

The Deutsch problem is not interested on the concrete values f may take, but on a global property of f : whether it is constant or not, technically on the value of

$$
f(0) \oplus f(1)
$$

Exploiting quantum parallelism and interference

Actually, the Deutsch algorithm explores another quantum resource interference - to obtain that global information on f

Let us create an interference pattern dependent on this property, and resort to wave collapse to prepare for the expected result:

Exploiting quantum parallelism and interference

Let us start with a simple, auxiliary computation:

$$
\begin{aligned}
& U_{f}(|x\rangle \otimes(|0\rangle-|1\rangle)) \\
& =U_{f}(|x\rangle|0\rangle-|x\rangle|1\rangle) \\
& =|x\rangle|0 \oplus f(x)\rangle-|x\rangle|1 \oplus f(x)\rangle \\
& =|x\rangle|f(x)\rangle-|x\rangle|\neg f(x)\rangle \\
& =|x\rangle \otimes(|f(x)\rangle-|\neg f(x)\rangle) \\
& = \begin{cases}|x\rangle \otimes(|0\rangle-|1\rangle) & \text { if } f(x)=0 \\
|x\rangle \otimes(|1\rangle-|0\rangle) & \text { if } f(x)=1\end{cases}
\end{aligned}
$$

$\{\otimes$ distributes over +$\}$
\{Defn. of f \}
$\{0 \oplus x=x, 1 \oplus x=\neg x\}$
$\{\otimes$ distributes over +$\}$
\{case distinction\}
leading to

$$
U_{f}(|x\rangle \otimes(|0\rangle-|1\rangle))=(-1)^{f(x)}|x\rangle \otimes(|0\rangle-|1\rangle)
$$

Exploiting quantum parallelism and interference

$$
\begin{aligned}
& (H \otimes I) U_{f}(H \otimes I)(|0\rangle \otimes|-\rangle) \\
& =(H \otimes I) U_{f}(|+\rangle \otimes|-\rangle) \\
& =\frac{1}{\sqrt{2}}(H \otimes I) U_{f}((|0\rangle+|1\rangle) \otimes|-\rangle) \\
& =\frac{1}{\sqrt{2}}(H \otimes I)\left(U_{f}|0\rangle \otimes|-\rangle+U_{f}|1\rangle \otimes|-\rangle\right) \\
& \left.=\frac{1}{\sqrt{2}}(H \otimes I)\left((-1)^{f(0)}|0\rangle \otimes|-\rangle+(-1)^{f(1)}|1\rangle \otimes|-\rangle\right) \quad \text { \{Previous slide }\right\} \\
& = \begin{cases}(H \otimes I)(\pm 1)|+\rangle \otimes|-\rangle & \text { if } f(0)=f(1) \\
(H \otimes I)(\pm 1)|-\rangle \otimes|-\rangle & \text { if } f(0) \neq f(1)\end{cases} \\
& = \begin{cases}(\pm 1)|0\rangle \otimes|-\rangle & \text { if } f(0)=f(1) \\
(\pm 1)|1\rangle \otimes|-\rangle & \text { if } f(0) \neq f(1)\end{cases}
\end{aligned}
$$

To answer the original problem is now enough to measure the first qubit: if it is in state $|0\rangle$, then f is constant.

Lessons learnt

- A typical structure fro a quantum algorithm includes three phases:

1. State preparation (fix initial setting)
2. Transformation (combination of unitary transformations)
3. Measurement (projection onto a basis vector associated with a measurement tool)

- This 'toy' algorithm is an illustrative simplification of the first
algorithm with quantum advantage
presented in literature [Deutsch, 1985]
- All other quantum algorithms crucially rely on similar ideas of quantum interference

What can be expected from quantum computation?

- The meaning of computable remains the same ...
- ... but the order of complexity may change

Factoring in polynomial time $-\mathcal{O}\left((\ln n)^{3}\right)$
Peter Shor, Polynomial-Time Algorithms for Prime
Factorization and Discrete Logarithms on a Quantum Computer (1994)

Which problems a Quantum Computer can solve?

- 1994: Peter Shor's factorization algorithm (exponential speed-up),
- 1996: Grover's unstructured search (quadratic speed-up),
- 2018: Advances in hash collision search, i.e finding two items identical in a long list - serious threat to the basic building blocks of secure electronic commerce.
- 2019: Google announced to have achieved quantum supermacy

Availability of proof of concept hardware

Explosion of emerging applications in several domains: security, finance, optimization, machine learning, ...

Quantum algorithms: Engineering Nature

No magic ...

- A huge amount of information can be stored and manipulated in the states of a relatively small number of qubits,
- ... but measurement will pick up just one of the computed solutions and colapse the whole (quantum) state
... but engineering:
To boost the probability of arriving to a solution by canceling out some computational paths and reinforcing others,
depending on the structure of the problem at hands.

Where exactly do we stand?

NISQ - Noisy Intermediate-Scale Quantum Hybrid machines:

- the quantum device as a coprocessor
- typically accessed as a service over the cloud

Where exactly do we stand?

- Quantum devices have associated decoherence times, which limit the number of quantum operations that can be performed before the results are 'drowned' by noise.
- Each operation performed with quantum gates introduces accuracy errors in the system, which limits the size of quantum circuits that can be executed reliably.

