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Computing with qubits

State: A unit vectors of (complex) amplitudes in Cn

Operator: A unitary matrix (M†M = I ).

Why unitary?
because the norm squared of a unitary matrix forms a double stochastic
one.
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Some operators

The X gate

e.g.

X |0⟩ =

[
0 1
1 0

] [
1
0

]
= |1⟩

X (α|0⟩+ β|1⟩) =

[
0 1
1 0

] [
α
β

]
=

[
β
α

]
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Some operators

The H gate

H =
1√
2

[
1 1
1 −1

]
The H gate creates superpositions:

H |0⟩ =
1√
2

[
1 1
1 −1

] [
1
0

]
=

[
1√
2
1√
2

]
= |+⟩
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My first quantum algorithm

The Deutsch problem

Decide whether
f : 2 −→ 2

is constant or not, with a single evaluation of f ?

• Classically, to determine which case f (1) = f (0) or f (1) ̸= f (0)
holds requires running f twice

• Resorting to quantum computation, however, it suffices to run f
once . . . due to two quantum effects superposition and interference
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Turning f into a quantum operation

f : 2 −→ 2 extends to a linear map C2 → C2

. . . but not necessarily to a unitary transformation.

proof
The extended f does not preserve norms: Actually, when f is constant on
0 we obtain f |0⟩ = |0⟩ and f |1⟩ = |0⟩.
Thus, ∣∣∣ 1√

2
(|0⟩+ |1⟩)

∣∣∣ = 1

However, ∣∣∣f ( 1√
2
(|0⟩+ |1⟩)

) ∣∣∣ = ∣∣∣ 1√
2
(|0⟩+ |0⟩)

∣∣∣ = ∣∣∣ 2√
2
|0⟩

∣∣∣ = 2√
2
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Turning f into a quantum operation

Intuition
f potentially loses information whereas pure quantum operations are
reversible [Charles Bennett, 1973]

Actually, a unitary transformation is always injective so if a map loses
information it cannot be unitary.
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Turning f into a quantum operation

• The oracle takes input |x⟩|y⟩ to |x⟩|y ⊕ f (x)⟩
• Fixing y = 0 it encodes f :

Uf (|x⟩ ⊗ |0⟩) = |x⟩ ⊗ |0⊕ f (x)⟩ = |x⟩ ⊗ |f (x)⟩
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Turning f into a quantum operation

• Uf is a unitary, i.e. a reversible gate

book-yanofsky CUUS235-Yanofsky ISBN 9780521879965 June 6, 2008 16:17 Char Count= 0

6.1 Deutsch’s Algorithm 173

looking at the following circuit:

|x⟩

Uf

|x⟩

Uf

|x⟩

|y⟩ |y ⊕ f (x)⟩ |y⟩

(6.7)

State |x, y⟩ goes to |x, y ⊕ f (x)⟩, which further goes to

|x, (y ⊕ f (x)) ⊕ f (x)⟩ = |x, y ⊕ ( f (x) ⊕ f (x))⟩ = |x, y ⊕ 0⟩ = |x, y⟩, (6.8)

where the first equality is due to the associativity of ⊕ and the second equality holds
because ⊕ is idempotent. From this we see that Uf is its own inverse.

In quantum systems, evaluating f is equivalent to multiplying a state by the uni-
tary matrix Uf . For function (6.4), the corresponding unitary matrix, Uf , is

⎡

⎢⎢⎢⎣

00 01 10 11
00 0 1 0 0
01 1 0 0 0
10 0 0 1 0
11 0 0 0 1

⎤

⎥⎥⎥⎦
. (6.9)

Remember that the top column name corresponds to the input |x, y⟩ and the
left-hand row name corresponds to the outputs |x′, y′⟩. A 1 in the xy column and the
x′y′ row means that for input |x, y⟩, the output will be |x′, y′⟩.

Exercise 6.1.2 What is the adjoint of the matrix given in Equation (6.9)? Show that
this matrix is its own inverse. !

Exercise 6.1.3 Give the unitary matrices that correspond to the other three func-
tions from {0, 1} to {0, 1}. Show that each of the matrices is its own adjoint and hence
all are reversible and unitary. !

Let us remind ourselves of the task at hand. We are given such a matrix that ex-
presses a function but we cannot “look inside” the matrix to “see” how it is defined.
We are asked to determine if the function is balanced or constant.

Let us take a first stab at a quantum algorithm to solve this problem. Rather than
evaluating f twice, we shall try our trick of superposition of states. Instead of having
the top input to be either in state |0⟩ or in state |1⟩, we shall put the top input in state

|0⟩ + |1⟩
√

2
, (6.10)

which is “half-way” |0⟩ and “half-way” |1⟩. The Hadamard matrix can place a qubit
in such a state.

H|0⟩ =

⎡

⎢⎣
1√
2

1√
2

1√
2

− 1√
2

⎤

⎥⎦

⎡

⎢⎣
1

0

⎤

⎥⎦ =

⎡

⎢⎣
1√
2

1√
2

⎤

⎥⎦ = |0⟩ + |1⟩√
2

. (6.11)

|x⟩|(y ⊕ f (x))⊕ f (x)⟩ = |x⟩|y ⊕ (f (x)⊕ f (x))⟩ = |x⟩|y ⊕ 0⟩ = |x⟩|y⟩



Computing with qubits Deutsch algorithm

Exploiting quantum parallelism

Can f be evaluated for |0⟩ and |1⟩ in one step?

Consider the following circuit

Uf (H ⊗ I )(|0⟩ ⊗ |0⟩)

= Uf

(
1√
2
(|0⟩+ |1⟩)⊗ |0⟩

)
{Defn. of H and I}

= Uf

(
1√
2
(|00⟩+ |10⟩)

)
{⊗ distributes over +}

= 1√
2
(|0⟩|0⊕ f (0)⟩+ |1⟩|0⊕ f (1)⟩) {Defn. of Uf }

= 1√
2
(|0⟩|f (0)⟩+ |1⟩|f (1)⟩)︸ ︷︷ ︸

f (0) and f (1) in a single run

{0⊕ x = x}
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Are we done?

Uf (H ⊗ I )(|0⟩ ⊗ |0⟩) = 1√
2
(|0⟩|f (0)⟩+ |1⟩|f (1)⟩)︸ ︷︷ ︸

f (0) and f (1) in a single run

NO
Although both values have been computed simultaneously, only one of
them is retrieved upon measurement in the computational basis:
Actually, 0 or 1 will be retrieved with identical probability (why?).

YES
The Deutsch problem is not interested on the concrete values f may
take, but on a global property of f : whether it is constant or not,
technically on the value of

f (0)⊕ f (1)
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Exploiting quantum parallelism and interference

Actually, the Deutsch algorithm explores another quantum resource —
interference — to obtain that global information on f

Let us create an interference pattern dependent on this property, and
resort to wave collapse to prepare for the expected result:
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Exploiting quantum parallelism and interference

Let us start with a simple, auxiliary computation:

Uf (|x⟩ ⊗ (|0⟩− |1⟩))
= Uf (|x⟩|0⟩− |x⟩|1⟩) {⊗ distributes over + }

= |x⟩|0⊕ f (x)⟩− |x⟩|1⊕ f (x)⟩ {Defn. of f }

= |x⟩|f (x)⟩− |x⟩|¬f (x)⟩ {0⊕ x = x , 1⊕ x = ¬x}

= |x⟩ ⊗ (|f (x)⟩− |¬f (x)⟩) {⊗ distributes over +}

=

{
|x⟩ ⊗ (|0⟩− |1⟩) if f (x) = 0

|x⟩ ⊗ (|1⟩− |0⟩) if f (x) = 1
{case distinction}

leading to

Uf (|x⟩ ⊗ (|0⟩− |1⟩)) = (−1)f (x)|x⟩ ⊗ (|0⟩− |1⟩)
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Exploiting quantum parallelism and interference

(H ⊗ I )Uf (H ⊗ I ) (|0⟩ ⊗ |−⟩)
= (H ⊗ I )Uf (|+⟩ ⊗ |−⟩)
= 1√

2
(H ⊗ I )Uf ((|0⟩+ |1⟩)⊗ |−⟩)

= 1√
2
(H ⊗ I ) (Uf |0⟩ ⊗ |−⟩+ Uf |1⟩ ⊗ |−⟩)

= 1√
2
(H ⊗ I )

(
(−1)f (0)|0⟩ ⊗ |−⟩+ (−1)f (1)|1⟩ ⊗ |−⟩

)
{Previous slide}

=

{
(H ⊗ I )(±1)|+⟩ ⊗ |−⟩ if f (0) = f (1)

(H ⊗ I )(±1)|−⟩ ⊗ |−⟩ if f (0) ̸= f (1)

=

{
(±1)|0⟩ ⊗ |−⟩ if f (0) = f (1)

(±1)|1⟩ ⊗ |−⟩ if f (0) ̸= f (1)

To answer the original problem is now enough to measure the first qubit:
if it is in state |0⟩, then f is constant.
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Lessons learnt

• A typical structure fro a quantum algorithm includes three phases:

1. State preparation
(fix initial setting)

2. Transformation
(combination of unitary transformations)

3. Measurement
(projection onto a basis vector associated with a measurement
tool)

• This ’toy’ algorithm is an illustrative simplification of the first

algorithm with quantum advantage

presented in literature [Deutsch, 1985]

• All other quantum algorithms crucially rely on similar ideas of
quantum interference
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What can be expected from quantum computation?

• The meaning of computable remains the same ...

• ... but the order of complexity may change

Factoring in polynomial time - O((ln n)3)

Peter Shor, Polynomial-Time Algorithms for Prime
Factorization and Discrete Logarithms on a Quantum Computer (1994)
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Which problems a Quantum Computer can solve?

• 1994: Peter Shor’s factorization algorithm (exponential speed-up),

• 1996: Grover’s unstructured search (quadratic speed-up),

• 2018: Advances in hash collision search, i.e finding two items
identical in a long list — serious threat to the basic building blocks
of secure electronic commerce.

• 2019: Google announced to have achieved quantum supermacy

Availability of proof of concept hardware

Explosion of emerging applications in sev-
eral domains: security, finance, optimization,
machine learning, ...
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Quantum algorithms: Engineering Nature

No magic ...

• A huge amount of information can be stored and manipulated in the
states of a relatively small number of qubits,

• ... but measurement will pick up just one of the computed solutions
and colapse the whole (quantum) state

... but engineering:
To boost the probability of arriving to a solution by canceling out some
computational paths and reinforcing others,

depending on the structure of the problem at hands.
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Where exactly do we stand?

NISQ - Noisy Intermediate-Scale Quantum Hybrid machines:

• the quantum device as a coprocessor

• typically accessed as a service over the cloud
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Where exactly do we stand?
• Quantum devices have associated decoherence times, which limit

the number of quantum operations that can be performed before
the results are ’drowned’ by noise.

• Each operation performed with quantum gates introduces accuracy
errors in the system, which limits the size of quantum circuits that
can be executed reliably.
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