
Lecture 10: Untyped λ-calculus

Summary.
(1) Introduction to the λ-calculus.

(2) Basic concepts in untyped λ-calculus: terms; α−equivalence; β−reduction as a computa-
tional dynamics.

(3) A glimpse on programming within the untyped λ-calculus.

Luı́s Soares Barbosa,
UNIV. MINHO (Informatics Dep.) & INL (Quantum Software Engineering Group)

Note.

This lecture initiates the last part of the course. The objective is to introduce the Curry-Howard-
Lambek correspondence connecting Logic, Computation and Categories, the later providing the
basic mathematical semantic structures. The triangle below will be discussed for the two com-
putation paradigms students have met along their Physics Engineering degree: classical and
quantum.

Computation oo // Categories

Logic
$$

dd

zz

::

Overview.

The λ-calculus [1] is a theory of functions seen as formal expressions, and therefore somehow
closer to the intensional view of functions as rules (e.g. f(x) =

√
x sin x) which was predo-

minant in the pre-20th century Mathematics. Note that in a discipline of programming this view
is relevant to typical computational questions concerning the way a function is defined, often
irrespectively of its actual meaning. For example, questions concerned with how much memory
or time the execution of a function takes?1. Treating functions as expressions makes possible to
nest them without any need to mention the intermediate results explicitly, as well as to take them
as first class citizens, and thus easily express higher-order functions.

The λ-calculus was initially proposed by Alonzo Church, around 1930, as an idealized program-
ming language and postulated to be able to represent any computable function. Even if the notion

1The alternative, more general view, brought to scene by the development of set theory, focus on the way argu-
ments are mapped to outputs. Functions are regarded as graphs in this extensional perspective.

1

of a computable function is only given intuitively2, the class of functions expressible in the λ-
calculus coincides with that of Gödel class of general recursive functions as well as the one
defined by Turing machines. The assertion that this class of functions, expressed in any of these
formal models, captures intuitive computability is known as the Church-Turing thesis.

This lecture introduces the untyped version of the λ-calculus which omits any information on the
type, i.e. domain and codomain, of a function. This provides a very flexible, although possibly
unsafe setting to manipulate and reason about functions.

λ-terms.

Given a countably infinite set of variables, X, the set Λ, which provides the syntax for the λ-
calculus, contains the terms built inductively according to the following grammar:

t, t ′ 3 x | t t ′ | λx.t

where x ∈ X.

Conventions.

• Application associate to the left — e.g. f x y means (f x)y.

• The scope of an abstraction goes as far to the right as possible.

Free variables. Variables not bound by an abstraction are free (they correspond to the assump-
tions within a term).

FV(x) = {x}

FV(t t ′) = FV(t) ∪ FV(t ′)

FV(λx.t) = FV(t) \ {x}

Variable renaming and α-equivalence.

Two terms are α-equivalent if they differ solely in the bounded variables. The relation =α is
defined as the smallest congruence satisfying the following rule

y /∈ t
(α)

λx.t = λy.t[x := y]

2An informal definition of computability calls for a ’pencil-and-paper’ method allowing a trained person to
calculate the result of the function for any given argument, is not easy to formalize.

2

where

z[x := y] =

{
y ⇐ z = x

z ⇐ otherwise

(t u)[x := y] = t[x := y]u[x := y]

(λz.t)[x := y] =

{
λy.t[x := y] ⇐ z = x

λz.t[x := y] ⇐ otherwise

and y /∈ t abbreviates variable y not occurring free in term t.

Every term is α-equivalent to another term in which the names of all bound variables are distinct
from each other and from any free variable (the proof follows an easy inductive argument). In
practice, we may always assume, without loss of generality, that bound variables can be renamed
to be distinct.

Substitution of v for x in t. Substitution of a term v for a variable x in another term t, repre-
sented by t[x := v] must be done carefully. Firstly, only free variables can be replaced, e.g.

(x(λx.λy.x)) [x := v] = v(λx.λy.x)

and not v(λv.λy.v). Additionally, free variables cannot be captured along the substitution. For
example, let v = λz.x z and consider the following substitution,

λx.y x [y := v] = λx.v x = λx.(λz.x z) x

Note that variable x was free in term v and got captured along the substitutions.

Formally,

z[x := v] =

{
v ⇐ z = x

z ⇐ otherwise

(t u)[x := v] = (t[x := v]) (u[x := v])

(λx.t)[x := v] = λx.t

(λy.t)[x := v] = (λy.t[x := v]) ⇐ x 6= y and y /∈ FV(v)

(λy.t)[x := v] = (λz.t[y := z][x := v]) ⇐ x 6= y and y ∈ FV(v) and z fresh

Exercise 1

The composition of a function with itself (f · f) is written in the λ-calculus as

λx.f f x

Encode (higher-order) functions to map f to f · f, and the pair of functions f and g to f · g.

3

Exercise 2

Evaluate the expression
((λf.λx.f(f x))) (λy.y2))(2)

Note that the expression above is not a pure λ-expression (why?)

Exercise 3

Which of the following pairs of terms are α-equivalent?

{(λx.xz, λy.yz), (λx.λy.xy, λy.λx.yx), (λx.xy, λx.xz)}

Exercise 4

Show that =α is an equivalence relation over Λ. Note that, strictly speaking, λ-terms are the classes
of equivalence in the quotient

Λ/=α = {[t]α | t ∈ Λ} = {{u ∈ Λ | t =α u} | t ∈ Λ}

In some textbooks elements of Λ are called λ-pre-terms.

Exercise 5

Compute

1. (λx.x y)[x := λz.z]

2. (λx.x y)[y := λz.z]

4

λ dynamics.

β-reduction. There is a computational dynamics captured by the λ-calculus: that of functional
application. Formally, β-reduction is the smallest relation on λ-terms such that

(λx.t)u︸ ︷︷ ︸
β−redex

−→β t[x := u]︸ ︷︷ ︸
β−contractum

and is closed under the following rules: if t −→β t
′, then, for all x ∈ X and λ-term v,

t u −→β t
′ u

u t −→β u t
′

λx.t −→β λx.t
′

A term t is in a normal form if there is no term u such that t −→β u.

The Church-Rosser Theorem (1936).

If a term t has two derivations, e.g. t −→∗β v and t −→∗β v ′, there exists a term u such that
v −→∗β u and v ′ −→∗β u.

Extensionality: η-equivalence. The terms x and λy.x y, being normal forms for −→β, are not
β-equivalent. In general the same applies to t and λy.t y, for an arbitrary term t. However, both
terms ’exhibit the same behaviour’ and, thus, from the point of view of extensionality should
be equivalent. This can be captured by η-reductions: the smallest congruence satisfying the
following rule:

(η)
λy.t y −→η t

whenever y /∈ FV(t). Note that βη-reduction is the union of both relations. Similarly, one
defines =βη and normal form for βη-reduction.

Exercise 6

Compute β-reductions of the following terms

1. λx.y ((λz.z z) (λw.w))

2. (λx.x x) λz.z

3. (λz.z) λy.y

5

Exercise 7

Define β-equivalence, =β, as the transitive, reflexive, symmetric closure of −→β. Show that

(λx.x)y z =β y ((λx.x) z)

Exercise 8

Define I = λx.x and K = λy.λx.y. Show that the term K(II) contains more than one redex and can,
thus, have more than one β-reduction. Show also that both derivations converge in the same term.

Exercise 9

Show that the termΩ = ωω, whereω = λx.xx, has an infinite β-reduction sequence.

Expressability.

As discussed above, β-reduction expresses (classical, functional) computation. In the follow-
ing half-worked exercises we discuss how to represent arithmetic, Booleans, conditionals and
recursive definitions within the λ-calculus. As mentioned above, the λ-calculus constitutes an
alternative formulation of the theory of recursive functions, which by the Church-Turing thesis,
captures the notion of an effectively computable procedure, just as a Turing machine. We will
not formalised that discussion here, as irrelevant for the objective of this course. The interested
reader is referred to e.g. [2].

Exercise 10

Numerals. The number n can be represented in the λ-calculus by the following term, known as the
Church numeral n,

cn = λs.λz.sn z

Write the Church numerals corresponding to numbers 0 to 3. Show that

succ cn = cn+1

given the following encoding of the successor function:

succ = λn.λf.λx.f (n f x).

6

Exercise 11

Arithmetic. Consider now the following encoding of addition

add = λx.λy.λs.λz.x s (y s z)

Verify that

add cncm = (λx.λy.λs.λz.xs(ysz)) cncm

=β λs.λz.cns(cmsz)

=β λs.λz.cns(s
mz)

=β λs.λz.sn(smz)

= λs.λz.sn+mz

= cn+m

Study the following encodings of multiplication and exponentiation:

mult = λx.λy.λs.x(ys) and exp = λx.λy.yx

Exercise 12

Booleans. The Boolean values true and false can be encoded as

true = λx.λy.x and false = λx.λy.y

show that the term and = λxy.x y false encodes conjunction.

Exercise 13

Conditionals. Conditionals can be represented by the term

b→ t;u = b tu

for b ∈ {true, false}. Actually,

true→ t;u = true t u

= (λx.λy.x)t u

=β (λy.t)u

=β t

Compute false→ t;u.

7

Exercise 14

Pairing. Consider the following encoding of pairs

〈t, u〉 = λx.xtu

π1 = λx.λy.x

π2 = λx.λy.y

Show that 〈t, u〉π1 = t

Exercise 15

Recursion. A fixed point of a function f is a value x such that x = f(x). Their relevance comes from
this: they are solutions to equations. Similarly, we may say that a term u is a fixed point of a term t in the
λ-calculus if

u =β t u

Differently to what happens in arithmetic, in the untyped λ-calculus, every term t has a fixed point. which
means that one can always solve equations as above in the calculus.

The following λ-term encodes a fixed point operator:

Y = λf.(λx.f (x x)) λx.f (x x)

Actually,

Y t = (λf.(λx.f (x x)) λx.f (x x)) t

=β (λx.t (x x)) λx.t (x x))

=β t ((λx.t (x x)) λx.t (x x))

=β t ((λf.(λx.f (x x)) λx.f (x x)) t)

= t (Y t)

As a corollary note that, for a given term v, there is a term t such that

t =β v[f := t]

Show that such is the case by making
t = Y (λf.v)

Exercise 16

Let C be a term encoding a condition, i.e. cond cn =β true or cond cn =β false, for all n ∈ N.
Define

H = λf.λx. ((condx)→ x; f(succ x))

8

The term R = Y H corresponds to the computation of the smallest number greater than the given one that
satisfies condition cond. Study the following derivation:

R c4 = (Y H) c4

=β H (Y H) c4

= (λf.λx. (condx→ x; f (succ x))) (Y H) c4

=β (cond c4 → c4; (Y H) (succ c4))

= cond c4 → c4;R (succ c4)

References

[1] H. Barendregt. The Lambda-Calculus: Its Syntax and Semantics. Elsevier Science Publishers
B. V. (North-Holland), 1980.

[2] J.R. Hindley and J.P. Seldin. Lambda-calculus and Combinators: an Introduction. Cam-
bridge University Press, 2008.

9

