
Lecture 13: The Curry-Howard-Lambek correspondence
for classical computation

Summary.
(1) The Curry-Howard-Lambek correspondence: from logic to categories and back.

(2) The Curry-Howard-Lambek correspondence: from programs to categories and back.

Luı́s Soares Barbosa,
UNIV. MINHO (Informatics Dep.) & INL (Quantum Software Engineering Group)

Overview.

The general triangle

Computation oo // Categories

Logic
$$

dd

zz

::

is instantiated to

λ-calculus oo // Cartesian-closed categories

Intuitionistic logic
&&

ff

vv

66

A previous lecture already discussed the link between (intuitionistic) logic and (simply-typed)
λ-calculus under the motto

Formulas-as-Types and Proofs-as-Programs

It was emphasized that exploring the computational content of proofs is, indeed, fully aligned
with the constructive (BHK) interpretation of intuitionistic logic under which, for example, a
proof of A ∧ B is a pair of proofs of both A and B, and a proof of A −→ B is a procedure
to transform any proof of A into a proof of B. We turn now to the links that both logic and
computation keep with the mathematical structures which provide their semantical models, i.e
with categories.

1

Given a Cartesian-closed category (CCC) C, the Lambek’s part of the diagram identifies

Formulas-as-Objects and Proofs-as-Arrows

Recall the basic structure of a CCC:

• Products: A × B, with projections π1, π2 and a split arrow 〈f, g〉 : C −→ A × B defined
by a universal property from f : C −→ A and g : C −→ g . The product construction is
functorial: f× g = 〈f · π1, g · π2〉.

• Exponentials: BA, given through the natural isomorphism between

f : A× B −→ C ⇔ f : A −→ CB

expressed through another universal property

k = f ⇔ f = ev · (k× id)

A× B f×id
//

f
%%

CB × B
ev

��

Y

A
f // CB

Construction −C extends to a functor, the covariant exponential functor, by defining

hC : XC −→ YC = (h · ev)

for h : X −→ Y.

Note that the exponential object XC represents as an object in the category, the arrows
from C to X. Consequently, the action of −C on each arrow f : X −→ Y should internalise
composition with h. In Set it is easy to verify that this is indeed the case. For g : C −→ X

and c ∈ C, a simple calculation yields,

hC(g)(c)

= { hC = (h · ev)}

(h · ev)(g)(c)
= { uncurrying }

h · ev (g, c)
= { function composition }

2

h(ev(g, c))

= { ev definition}

h(g(c))

= { function composition }

(h · g) (c)

which means that hC = h · .

The link to logic.

Formulas in intuitionistic logic correspond to objects in C; proofs correspond to morphisms in C.
The correspondence is as follows:

Intuitionistic logic CCC

Γ, x : A ` A π2 : Γ ×A −→ A

Γ ` A Γ ` B

Γ ` A∧ B

f : Γ −→ A g : Γ −→ B

〈f, g〉 : Γ −→ A× B

Γ ` A∧ B

Γ ` A

f : Γ −→ A× B

π1 · f : Γ −→ A

Γ ` A∧ B

Γ ` B

f : Γ −→ A× B

π2 · f : Γ −→ B

Γ,A ` B

Γ ` A −→ B

f : Γ ×A −→ B

f : Γ −→ BA

Γ ` A −→ B Γ ` A

Γ ` B

f : Γ −→ BA g : Γ −→ A

evA,B · 〈f, g〉 : Γ −→ B

Exercise 1

Extend the CHL correspondence to capture the propositional intuitionistic logic is enriched with dis-
junction, i.e. connectives ∨ and ⊥.

3

The link to computation.

Types-as-Objects and Programs-as-Arrows

Types in the simply-typed λ-calculus correspond objects in a CCC C. Programs, i.e. terms in
the simply-typed λ-calculus, on the other hand, correspond to morphisms in C. Moreover, the
β, η-reduction is suitably derived from the axioms of a CCC. The correspondence is captured by
a semantic function which translates each term

x1 : A1, · · · , xn : An ` u : B

into an arrow in C:

[[u]] : [[A1]]× · · · × [[An]] −→ [[B]]

The correspondence is defined recursively on types by

[[A× B]] =̂ [[A]]× [[B]]

[[A −→ B]] =̂ [[B]][[A]]

assuming a set of distinguished objects in C as semantic domains for the basic types.

Similarly, for terms,

[[Γ, x : A ` x : A]] =̂ π2 : [[Γ]]× [[A]] −→ [[A]]

[[Γ ` u : A× B]] = f : [[Γ]] −→ [[A]]× [[B]]

[[Γ ` π1 u : A]] =̂ π1 · f : [[Γ]] −→ [[A]]

[[Γ ` u : A]] = f : [[Γ]] −→ [[A]] [[Γ ` v : B]] = g : [[Γ]] −→ [[B]]

[[Γ ` 〈u, v〉 : A× B]] =̂ 〈f, g〉 : [[Γ]] −→ [[A]]× [[B]]

[[Γ, x : A ` u : B]] = f : [[Γ]]× [[A]] −→ [[B]]

[[Γ ` λx . u : A −→ B]] =̂ f : [[Γ]] −→ [[B]][[A]]

[[Γ ` u : A −→ B]] = f [[Γ ` v : A]] = g

[[Γ ` uv : B]] =̂ ev · 〈f, g〉 : [[A]] −→ [[B]]

4

Soundness of [[−]].

Soundness of the translation of simply-typed λ-calculus to a CCC means that β, η-equivalence,
which equates terms that are derived one from the other through the rules of β, η-reduction, cor-
respond to semantic equality, i.e.

u =β,η v ⇒ [[u]] = [[v]]

Let Γ = x1 : A1 · · · An. Given terms Γ ` u : A and, for all 1 ≤ i ≤ n, Γ ` ui A,

[[u[x1 := u1, · · · , xn := un]]] = [[u]] · 〈[[u1]] · · · , [[un]]〉

This statement, known as the substitution lemma, is proved by induction on the structure of terms.
The base case is that of variables: xi. Actually,

[[xi[x := u]]] = [[ui]] = πi · 〈[[u1]], · · · , [[uk]]〉 = [[xi]] · 〈[[u1]], · · · , [[uk]]〉

For the inductive process, consider, for example, λx . u. Thus,

[[λx . u[x := v]]]
= { substitution }

[[λx . u[x, x := v, x]]]
= { [[−]] definition }

[[u[x, x := v, x]]]
= { induction hypothesis }

[[u]] · (〈v〉 × id)
= { fusion law for exponentials: f · g = f · (g× id) }

[[u]] · 〈v〉
= { [[−]] definition }

[[λx . u]] · 〈v〉

5

Exercise 2

Complete the proof of the substitution lemma above for the remaining cases.

To establish soundness of the semantic interpretation [[]], all we need to show is that the interpre-
tation of both sides of a β, η-reduction corresponds to a valid equation in a CCC. The substitution
lemma is an important tool in this proof.

Let us start with β-conversion, considering the interpretation of

(λx . u)v =β u[x := v]

[[(λx . u)v]]

= { [[−]] definition }

ev · 〈[[u]], [[v]]〉
= { ×-absorption law}

ev · ([[u]]× id) · 〈id, [[v]]〉
= { currying definition}

[[u]] · 〈id, [[v]]〉
= { substitution lemma}

[[u[x, v := x, x]]]

Exercise 3

Verify the second =β-conversion

π1〈u, v〉 = u and π2〈u, v〉 = v

Exercise 4

Verify the two =η-conversions
u = λx . u x

and
u = 〈π1 u, π2 u〉

6

Completeness of [[−]].

To show completeness one has to come up with a concrete CCC, Λ, in which equalities between
arrows correspond to β, η-conversions between terms, i.e.

u =β,η v ⇐ [[u]] = [[v]]

where [[−]] is an interpretation of λ-terms in Λ.

The categoryΛ has an object Â for each typeA in the λ-calculus, plus a final object 1. An arrow
from Â to B̂ is an equivalence class of the following relation defined on variable-term pairs:

(x, u) ≈ (y, v) iff x : A ` u : B and y : A ` v : B and u =β,η v[y := x]

which extends to pairs (∗, u), where ∗ represents the single inhabitant of 1, as follows:

(∗, u) ≈ (∗, v) iff ` u : B and ` v : B and u =β,η v

As usual, the equivalence class [(x, u)], for the element (x, u), is the set {(y, v) | (x, u) ≈ (y, v)}.
Thus, the homsets of Λ are as follows:

Λ [Â, B̂] = {[(x, u)] | x : A ` u : B}

Λ [1, B̂] = {[(∗, u)] | ` u : B}

Λ [Â, 1] = {!Â}

Exercise 5

In Λ define,

• Identities: idÂ =̂ [(x, x)] and id1 =̂ !1

• Composition:

[(x, u)] · [(y, v)] =̂ [(y, u[x := v])]

[(x, u)] · [(∗, v)] =̂ [(∗, u[x := v])]

[(∗, u)] · !Z =̂

{
[(y, u)] ⇐ Z = Â

[(∗, u)] ⇐ Z = 1

!W · h =̂ !Z for h : Z −→W

Prove that Λ is a category.

The categoryΛ has finite products and exponentials, and provides what is called a term (i.e. built
on top of the syntax) model for the simply-typed λ-calculus (see, e.g. [1] for proofs).

7

References

[1] S. Abramsky and N. Tzevelekos. Introduction to categories and categorical logic. In B. Co-
ecke, editor, New Structures for Physics, pages 3–94. Springer Lecture Notes on Physics
(813), 2011.

8

