
Lecture 14: Quantum λ-calculus

Summary.
(1) Syntax and operational semantics. Types.

(2) Examples: representation of quantum programs.

(3) Towards a Curry-Howard-Lambek corespondence for quantum computation.

Lúıs Soares Barbosa,

Univ. Minho (Informatics Dep.) & Inl (Quantum Software Engineering Group)

Motivation.

The development of a quantum λ-calculus is primarily associated to the quest for a (high-
order) functional programming language for quantum computation. Actually there are
several proposals for such a calculus, corresponding to different ways in which quantum
computation is conceptualized. In this lecture our focus is on the quantum data, classic
control paradigm as in, for example, the well-known QRAM model, where a classical
machine controls a quantum device through a program specifying a number of unitary
transformations and measurements over quantum data. Such a program is represented by
a λ-term in which quantum data is somehow embedded.

Note, however, that there are a number of different proposals for a λ-calculus for quantum
computation — see, for examples references [5, 2] for two approaches to expressing pure
quantum computations without measurement, or [1] for a calculus in which quantum data
is represented by density matrices, or M. Ying proposal for the incorporation of quantum
control [6].

Typically, programs in a quantum λ-calculus operate over both classical and quantum
data, and this fundamental distinction has to be lifted to the calculus. The basic issue to
keep in mind is that quantum data cannot be reused (duplicated), as stated by the famous
non-cloning principle. In a quantum program qubits must be uniquely referenced, i.e. no
two variable occurrences may refer to the same qubit. This is expressed syntactically by
linearity : a term λx.t is linear if the variable x is used at most once along the evaluation
of t. This is a main concern in the calculus below and, in particular, in the construction
of its typing system.

1

Syntax.

M,N, P 3 x | c |MN | λx.M | 〈M,N〉 | let 〈x, y〉 =MinN | ifMthenNelse P

where x ∈ X, for X an infinite set of variables, and c ranges over the following constants,

c 3 ∗ | 0 | 1 | new | ms | U

where new stands for a function for state preparation (accepts a classical bit b, returns
qubit |b〉), ms for a function performing a measurement (in the canonical basis), and U
for the application of a unitary transformation. Common abbreviations include

let x =MinP
abv
= (λx.P)M

λ〈x, y〉.P abv
= λz.(let 〈x, y〉 = z inP)

The notions of α-equivalence, free variable and substitution are defined as usual. Terms
encode quantum algorithms, e.g.

Example [fair coin].
coin = λ ∗ .ms(H(new0))

At first sight, it seemed reasonable to include a term to directly represent a qubit, e.g. |φ〉,
as in a function λx.|φ〉 which constantly outputs |φ〉. The problem comes from entangle-
ment: given two qubits entangled (and therefore not representable in the form |φ〉 ⊗ |φ ′〉)
there are no ways to represent in a term the variables corresponding to the first and second
qubits in the entangled pair.

Operational semantics.

The operational semantics is given in terms of a reduction machine, which somehow repre-
sents a quantum processor acting over a quantum memory. The problem mentioned above
requires some form of indirect representation of the quantum state of the underlying a
program. This entails the notion of a quantum closure:

[Q, L,M]

where Q is a normalized vector in ⊗nC2, M is a λ-term, and L is an ordered list |x1 · · · xn〉
of term variables meaning that variable xi is bound in term M to the qubit i.

Example.

[
1√
2
(|00〉+ |11〉), |p, q〉, λx.xpq]

2

where p and q represent, respectively, the two qubits in the entangled state |p, q〉 =
1√
2
(|00〉+ |11〉).

Given the probabilistic nature of measurement, the reduction machine is probabilistic:

(S, V, R, pr)

where S is a set of states, V ⊆ S is the subset of value states (in which reduction terminates),
R ⊆ S − V × S is a set of reductions, and pr : R −→ [0, 1] is a probability function, such
that the number of states related by R with each state is finite and∑

y∈{y | (x,y)∈R}

pr(x, y) ≤ 1

Notation x→ρ y stands for pr(x, y) = ρ, which extends, as expected, to n-step reductions:

x→n
ρ y

abv
= (prn(x, y) = ρ), where

prn(x, y) =
∑

z∈{z | (x,z)∈R}

pr(x, z)prn−1(z, y)

The basic relation is reachability with non-zero probability (x→n
>0 y for some n ≥ 0).

• total V-probability: prV(x) =
∑∞

n=0

∑
v∈V pr

n(x, v)

• divergence-probability: pr∞(x) = limn→∞∑x∈S pr
n(x, y)

• error-probability: prerr(x) = 1− prV(x) − pr∞(x)

In some situations it is useful to relax reachability to include null probability (x y)
because a null probability of getting to a certain state is not an absolute warranty of its
impossibility, due to decoherence and imprecision of physical operations. Thus, a state
x ∈ S is consistent if there is no error state e such that x e, where e is an error state if
e /∈ V and

∑
y∈S pr(e, y) < 1.

Exercise 1

Show that prerr(x) = 0 if x is consistent. Does the converse hold?

Operational semantics of the quantum λ-calculus

The reduction machine for the quantum λ-calculus is probabilistic and adopts a call-by-
value reduction strategy. Its purpose is to evaluate a quantum closure until a value state
is reached. A value state is a quantum closure whose term is a value, defined by

V,V ′ 3 x | λx.M | 〈V,V ′〉 | ∗ | 0 | 1 | new | ms | U

3

Classical control:

[Q, L, (λx.M)P] −→1 [Q, L,M[x := P]]

[Q, L, let 〈x, y〉 = 〈V,V ′〉 inN] −→1 [Q, L,N[x := V, y := V ′]]

[Q, L, if 0 thenNelse P] −→1 [Q, L, P]

[Q, L, if 1 thenNelse P] −→1 [Q, L,N]

Quantum data:

[Q, |x1, · · · , xn〉, new0] −→1 [Q⊗ |0〉, |x1, · · · , xn, xn+1〉, xn+1]

[Q, |x1, · · · , xn〉, new1] −→1 [Q⊗ |1〉, |x1, · · · , xn, xn+1〉, xn+1]

[Q, L,U〈x1, · · · , xn〉] −→1 [Q ′, L, 〈x1, · · · , xn〉]

[α|Q0〉+ β|Q1〉, L,ms xi] −→|α|2 [|Q0〉, L, 0]

[α|Q0〉+ β|Q1〉, L,ms xi] −→|β|2 [|Q1〉, L, 1]

In the rule dealing with U〈x1, · · · , xn〉, Q ′ is the state produced by applying U to qubits
indexed by variables x1 to xn. In the rule for measurements, |Q0〉 =

∑
j αj|φj〉 ⊗ |0〉 ⊗ |ψj〉

where |φj〉 is a i-qubit state, so that the measured qubit is the one pointed to by xi, and
similarly for |Q1〉.

Congruence rules:

[Q, L,N] −→ρ [Q ′, L ′, N ′]

[Q, L,MN] −→ρ [Q ′, L,MN ′]

[Q, L,M] −→ρ [Q ′, L ′,M ′]

[Q, L,MV] −→ρ [Q ′, L ′,M ′V]

[Q, L,N] −→ρ [Q ′, L ′, N ′]

[Q, L, 〈M,N〉] −→ρ [Q ′, L ′, 〈M,N ′〉]

[Q, L,M] −→ρ [Q ′, L ′,M ′]

[Q, L, 〈M,V〉] −→ρ [Q ′, L ′, 〈M ′, V〉]

[Q, L,M] −→ρ [Q ′, L ′,M ′]

[Q, L, ifMthenNelse P] −→ρ [Q ′, L ′, ifM ′ thenNelse P]
[Q, L,M] −→ρ [Q ′, L ′,M ′]

[Q, L, let 〈x, y〉 =MinN] −→ρ [Q ′, L ′, let 〈x, y〉 =M ′ inN]

4

Call-by-value or call-by-name?

The rules above define a λ-calculus with a call-by-values evaluation strategy. As mea-
surement is probabilistic, the evaluation strategy adopted affects not only the efficiency of
execution, but also the results themselves.

Consider M = (λx.badd xx)(ms(H(new0))), whrer badd is Boolean addition.

[| 〉, (λx.badd xx)(ms(H(new0)))]

−→1 [|0〉, (λx.badd xx)(ms (Hp0))]

−→1 [1√
2
(|0〉+ |1〉), (λx.badd xx)(msp0))]{

−→0.5 [|0〉, (λx.badd xx)(0)]
−→0.5 [|1〉, (λx.badd xx)(1)]{
−→1 [|0〉, badd 00]
−→1 [|1〉, badd 11]{
−→1 [|0〉, 0]
−→1 [|1〉, 0]

thus, returning 0 with probability 1. If a call-by-name evaluation strategy was used the
result would be

[| 〉, (λx.baddxx)(ms(H(new0)))]

−→1 [| 〉, badd (ms(H(new0)))(ms(H(new0)))]
−→0.25 [|01〉, 1]
−→0.25 [|10〉, 1]
−→0.25 [|00〉, 0]
−→0.25 [|11〉, 0]

yielding 0 or 1 with the same probability.

Types.

The reduction machine can produce error-states — e.g. [Q, L,H(λx.x)] or [Q, |x, y, z〉, U〈x, x〉]
— which correspond to run-time errors. The purpose of a type system is precisely to get
rid of such states, capturing correctly the notion of duplication. A similar concern will be
crucial in defining linear logic below.

A,B 3 bit | qubit | !A | A⊗ B | A(B | >

5

where A⊗B types pairs of elements of type A and B, A(B is the type of functions from
A to B, > is the type of constant ∗, and !A is the type of duplicable elements of type A.
Any value of type !A can be used in a context in which a value of type A is expected (i.e.
used only once, even if it is a duplicable value), leading to the following subtyping relation
-, defined under the overall condition n = 0⇒m = 0:

(bit)
!nbit - !mbit

(qubit)
!nqubit - !mqubit

(>)
!n> - !m>

A1 - B1 A2 - B2
(⊗)

!n(A1 ⊗A2) - !m(B1 ⊗ B2)
A - A ′ B - B ′

(()
!n(A ′(B) - !m(A⊗ B ′)

Exercise 2

Let QT denote the set of types for quantum λ-calculus. Show that (QT,-) is a preorder and
that the quotient of QT by --symmetric closure forms a poset under -.

Terms in the calculus are typed through typing judgements — ∆ B M : A, where ∆ is a
set of typed variables {x1 : A1, · · · , xn : An}

1. Each constant c has an associated type Ac
as follows:

A0, A1 = bit Anew = bit(qubit AU = qubit⊗n(qubit⊗n Ams = qubit(!bit

Exercise 3

Rule (ax2) establishes type !Ac as the most generic type for c. Use this fact to show that
no qubit created through new can have the type !qubit.

1Whenever several contexts ∆1, ∆2, ... ∆n, appear in a typing judgement they are assumed to be
disjoint.

6

Typing rules

A - B
(ax1)

∆, x : A B x : B

!Ac - B
(ax2)

∆ B c : B
(>)

∆ B ∗ : !n>

x : A,∆ B M : B
(λ1)

∆ B λx.M : A(B

Γ, !∆, x : A B M : B
(λ2), ifFV(M) ∩ |Γ | = ∅

Γ, !∆ B λx.M : !n+1(A(B)

Γ1, !∆ B M : A(B Γ2, !∆ B N : A
(app)

Γ1, Γ2, !∆ B MN : B

Γ1, !∆ B M : bit(B Γ2, !∆ B N : A Γ2, !∆ B P : A
(cond)

Γ1, Γ2, !∆ B ifMthenNelse P : A

!∆, Γ1 B M1 : !
nA1 !∆, Γ2 B M2 : !

nA2
(⊗in)

!∆, Γ1, Γ2 B 〈M1,M2〉 : !n(A1 ⊗A2)

!∆, Γ1 B M : !n(A1 ⊗A2) !∆, Γ2, x : !
nA1, y : !nA2 B N : A

(⊗out)
!∆, Γ1, Γ2 B let 〈x, y〉 =MinN : A

Well-typed quantum closure: Γ |= [Q, L,M] : A

A quantum closure [Q, L,M] is well-typed of type A in a context Γ if |L|∩ |Γ | = ∅, FV(M)−
|Γ | ⊆ |L|, and

Γ, x1 : qubit, · · · , xn : qubit B M : A

is a valid typing judgement, where FV(M) − |Γ | = {x1, · · · , xn}.

A quantum closure is a program if |Γ | = ∅.

The properties of this typing system are similar to those of the one used in Lecture 7 for
the simply-typed λ-calculus. In particular (see [4] for proof hints),

• Given a program [Q, L,M] of type A and a derivation

[Q, L,M] ∗ [Q ′, L ′,M ′]

[Q ′, L ′,M ′] is still a program of type A. This property is known as subject reduction
means that well-typedness is preserved by the reduction rules (i.e. by program exe-
cution), even in presence of decoherence and imprecision of the physical operations
(cf, the use of in the statement).

• A well-typed program does not reach an error state. I.e. any probabilistic compu-
tation path of such a program is either infinite, or reaches a value state in a finite
number of steps.This property is known as type safety.

7

• There exists a type-inference algorithm for the quantum λ-calculus.

Exercise 4

The type-inference algorithm mentioned above is described in detail in [3]. Provide a full imple-
mentation in Haskell of this algorithm.

Examples.

Example [fair coin]
B coin : >(bit

where coin = λ ∗ .ms(H(new0)), as above.

Example [Deutsch algorithm]

B Deutsch : !((qubit⊗ qubit(qubit⊗ qubit)(bit)

where

Deutsch Uf =

let comb f g = λ〈x, y〉.〈fx, gy〉
in let〈x, y〉 = (combH (λx.x)) (Uf〈H(new0), H(new1)〉)
in ms x

|0〉 H H ©
Uf

|1〉 H ·

8

Example [the teleportation protocol]

• Component (1): generates an EPR pair of entangled qubits:

B C1 : !(>(qubit⊗ qubit)

where C1 = λx.CNOT 〈H(new0), new0〉

• Component (2): performs a Bell measurement and outputs two classical bits::

B C2 : !(qubit((qubit(bit⊗ bit))

where C2 = λq1.λq2.(let 〈x, y〉 = CNOT 〈q1, q2〉 in 〈ms(Hx),msy〉

• Component (3): performs a correction::

B U : !(qubit((bit⊗ bit(qubit))

where

U = λq.λ〈x, y〉.if x then (if y thenU11q else ,U10q)

else (if y thenU01q else ,U00q)

where

U00 =̂

[
1 0

0 1

]
U01 =̂

[
0 1

1 0

]
U10 =̂

[
1 0

0 −1

]
U11 =̂

[
0 1

−1 0

]

Thus yielding

B Teleportation : (qubit(bit⊗ bit)⊗ (bit⊗ bit(qubit)

where

Teleportation = let 〈x, y〉 = C1 ∗ in
let f = C2 x in

let g = Uy in 〈f, g〉

9

Thus, the teleportation protocol creates two functions f and g, non duplicable because they
depend on the state of the pair of entangled qubits x and y, and such that (g · f)(z) = z

for an arbitrary qubit z, and (f · g)(x, y) = (x, y) for bits x and y. This pair of mutually
inverse functions can only be used once because each of them contains an embedded qubit.
Actually, they witness a single-use isomorphim between the (otherwise non isomorphic)
types qubit and bit⊗ bit.

Example [execution of the teleportation protocol]

In the sequel, consider the following abbreviations:

Mp,p ′ =̂ let f = C2 p in let g = Up ′ in g(fp0)

Bp1 =̂ λq1.let 〈p, p ′〉 = CNOT〈q1, p1〉 ∈ 〈ms(Hp),msp ′〉
Up2 =̂ λ〈x, y〉.if x then (if y thenU11p2 else ,U10p2)

else (if y thenU01p2 else ,U00p2)

10

[α|0〉+ β|1〉, let〈p, p ′〉 = C1 ∗ in let f = C2p in let g = Up ′ in g(fp0)]

−→1 [α|0〉+ β|1〉, let〈p, p ′〉 = CNOT 〈H(new0), new0〉 inMp,p ′]

−→1 [(α|0〉+ β|1〉)⊗ |0〉, let 〈p, p ′〉 = CNOT 〈Hp1, new0〉 inMp,p ′]

−→1 [(α|0〉+ β|1〉)⊗ 1√
2
(|0〉+ |1〉), let 〈p, p ′〉 = CNOT 〈p1, new0〉 inMp,p ′]

−→1 [(α|0〉+ β|1〉)⊗ 1√
2
(|0〉+ |1〉)⊗ |0〉, let 〈p, p ′〉 = CNOT 〈p1, p2〉 inMp,p ′]

−→1 [(α|0〉+ β|1〉)⊗ 1√
2
(|00〉+ |11〉), let 〈p, p ′〉 = 〈p1, p2〉 inMp,p ′]

−→1 [(α|0〉+ β|1〉)⊗ 1√
2
(|00〉+ |11〉), let f = C2 p1 in let g = Up2 ing(fp0)]

−→∗1 [(α|0〉+ β|1〉)⊗ 1√
2
(|00〉+ |11〉), Up2(Bp1, p0)]

−→1 [(α|0〉+ β|1〉)⊗ 1√
2
(|00〉+ |11〉), Up2(let 〈p, p ′〉 = CNOT〈p0, p1〉 in 〈ms(Hp),msp ′〉)]

−→1 [1√
2
(α|000〉+ α|011〉+ β|110〉+ β|101〉), Up2(let 〈p, p ′〉 = 〈p0, p1〉 in 〈ms(Hp),msp ′〉)]

−→1 [1√
2
(α|000〉+ α|011〉+ β|110〉+ β|101〉), Up2〈ms(Hp0),msp1〉]

−→1 [1
2
(α|000〉+ α|011〉+ α|100〉+ α|111〉+ β|010〉+ β|001〉+ β|110〉+ β|101〉), Up2〈msp0,msp1〉]

{
−→ 1

2
[1√
2
(α|000〉+ α|011〉+ β|010〉+ β|001〉, Up2〈0,msp1〉]

−→ 1
2

[1√
2
(α|100〉+ α|111〉+ β|110〉+ β|101〉, Up2〈1,msp1〉]

−→ 1

2
[(α|000〉+ β|001〉, Up2〈0, 0〉] −→∗1 [(α|000〉+ β|001〉, U00p2]

−→ 1
2

[(α|011〉+ β|010〉, Up2〈0, 1〉] −→∗1 [(α|011〉+ β|010〉, U01p2]
−→ 1

2
[(α|100〉+ β|101〉, Up2〈1, 0〉] −→∗1 [(α|100〉+ β|101〉, U10p2]

−→ 1
2

[(α|111〉+ β|110〉, Up2〈1, 1〉] −→∗1 [(α|111〉+ β|110〉, U11p2]

−→1 [(α|000〉+ β|001〉, p2] = [|00〉 ⊗ (α|0〉+ β|1〉, p2]
−→1 [(α|010〉+ β|011〉, p2] = [|01〉 ⊗ (α|0〉+ β|1〉, p2]
−→1 [(α|100〉+ β|101〉, p2] = [|10〉 ⊗ (α|0〉+ β|1〉, p2]
−→1 [(α|110〉+ β|111〉, p2] = [|11〉 ⊗ (α|0〉+ β|1〉, p2]

11

Exercise 5

Justify each step of the reduction above.

Exercise 6

Consider now the dense coding protocol depicted below:

Reduce the following quantum closure

[| 〉, let〈p, p ′〉 = C1 ∗ in let f = C2p in let g = Up ′ in f(g〈0, 1〉)]

Exercise 7

Reference [4] extends the calculus with

• a term for recursive function definition;

• the possibility to accommodate infinite data types in the language.

Read the paper and discuss typing and reduction for these new terms. Give examples.

Towards a Curry-Howard-Lambek Correspondence for quantum computation.

Once fixed a specific quantum λ-calculus, the Curry-Howard-Lambek correspondence will
have (tunned) families of symmetrical monoidal categories, and linear logic in the remaining
vertexes of the triangle. The former was already discussed in the previous module. Let us
give an idea of what linear logic is about.

12

Linear logic

In a previous lecture we resorted to Natural Deduction to introduce a proof system for a
propositional logic. Let us consider here the equivalent formulation in term of the Getzen
sequent calculus in which handling assumptions is more explicit. In a sequent

H1, H2, · · ·Hn ` A

assumptions are supposed to form a sequence rather than a set. The structural rules are
directly concerned with the manipulation of assumptions:

(Id)
A ` A

Γ,A, B,∆ ` C
(Exchange)

Γ, B,A,∆ ` C

Γ,A,A ` B
(Contract)

Γ,A ` B

Γ ` B
(Weak)

Γ,A,∆ ` B

Then, the sequent calculus adds the logic rules in the form of a rigth and a left rule,
depending on which side of a sequent the connective appears (this can be shown equivalent
to the pair of introduction / elimination rules used before). Thus, for the ∧,⇒ fragment,
one gets:

Γ ` A ∆ ` B
(∧ R)

Γ, ∆ ` A∧ B

Γ,A, B ` C
(∧ L)

Γ,A∧ B ` C

Γ,A ` B
(⇒ R)

Γ ` A⇒ B

Γ ` A B,∆ ` C
(⇒ L)

Γ,A⇒ B,∆ ` C

Γ ` A A,∆ ` B
(cut)

Γ, ∆ ` B

Note that the (cut) allows the use of lemmas in formal proofs. An important notion
in proof theory is that of cut elimination, a proof transformation in order to eliminate
all occurrences of this rule in the proof. The latter, with all lemmas removed, becomes
completely explicit, i.e. cut-free. Such a transformation is always possible as proved by
Gentzen himself.

What is the linear version of this logic?

Basically, the same logic (usually linear conjunctiona and linear implication are written
as ⊗ and (, respectively) without both the (Contract) and the (Weak) rules. Note
those rules are responsible for duplicating and discarding assumptions. In a category with

13

products, for example a CCC, they correspond to the diagonal function and projections,
i.e.

f : Γ ×A×A −→ B

f · (id× ∆A) : Γ ×A −→ B

f : Γ −→ B

f · π1 : Γ ×A −→ B

Exercise 8

Discuss if the following sequents can be proved in linear logic:

• A ` A⊗A

• (A⊗A)(B ` A(B

The structural rules can be re-introduced in linear logic through the exponential ! operator
defined by

Γ,A ` B
(!L)

Γ, !A ` B

!Γ ` A
(!R)

!Γ ` !A

yielding the new structural rules:

Γ ` B
(Weak)

Γ, !A ` B

Γ, !A, !A ` B
(Contract)

Γ, !A ` B

Classical implication is recovered as A⇒ B =̂ !A(B.

References

[1] Alejandro Dı́az-Caro. A lambda calculus for density matrices. In B.Y. Chang, edi-
tor, Programming Languages and Systems. APLAS 2017. Springer Lecture Notes in
Computer Science (10695), 2017.

[2] Ugo Dal Lago, Andrea Masini, and Margherita Zorzi. On a measurement-free quantum
lambda calculus with classical control. Math. Struct. Comput. Sci., 19(2):297–335,
2009.

[3] Peter Selinger and Benôıt Valiron. A lambda calculus for quantum computation with
classical control. Mathematical Structures in Computer Science, 16(3):527–552, 2006.

[4] Peter Selinger and Benôıt Valiron. Quantum lambda calculus. In Simon Gay and
Ian Mackie, editors, Semantic Techniques in Quantum Computation, pages 135–172.
Cambridge University Press, 2009.

14

[5] André van Tonder. A lambda calculus for quantum computation. SIAM J. Comput.,
33(5):1109–1135, 2004.

[6] M. Ying. Foundations of Quantum Programming. Elsevier, 2016.

15

