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Introduction.

We’ve studied categories as a general theory of mathematical structures, and emphasised
the role of morphisms : entities are characterised in terms of how they are composed and
interact, rather than of what they actually are. In computer science, as in many other
application domains, it is also useful to think of a category as a process theory, i.e. collection
of system types, a collection of processes linking them, and a discipline of wiring processes
together, i.e. a form of composition. Diagrams provide a way to represent such theories
in a pictorial, two-dimensional way (dually one may say a process theory as providing an
interpretation of diagrams).

This set of lectures explores the application of such a perspective to understand, and reason
within quantum informatics. Exposition is based on the so-called quantum picturalism,
an approach to quantum foundations initiated by Samson Abramsky and Bob Coecke
which gives prominence to diagramatic reasoning in the specification and transformation
of quantum systems. Reference [1] is the basic textbook1, while C. Heunen and J. Vicary
[3] provides a more concise introduction.

In this lecture we will introduce basic diagrams and examples of process theories embodied
in the familiar categories Set and Rel. Two forms of composition — vertical (i.e. sequen-
tial) and horizontal (i.e. parallel) will be discussed. This leads to the theory of monoidal
categories as the mathematical framework to capture the common structure of process
theories. Graphical languages for monoidal categories are discussed in detail in [4] (which
appears as chapter 4 in reference [2]).

1from which almost all pictures reproduced in the sequel were taken.
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Diagrams.

• Wires (system types), boxes (processes), and a slogan: only connectivity matters.

• Diagram equations (always hold regardless how boxes and diagrams are interpreted)
vs process equations2:

• Diagram equality: two diagrams are equal if they can be deformed into each other.

• Vertical (sequential) diagram composition: ·

2Theories where diagram equations and process equations coincide are called free — recall the notion
of a free group, free monoid, etc.
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• Horizontal (parallel) diagram composition: ⊗ represented by juxtaposition.

Clearly, ⊗ is functorial:

Diagramatic reasoning: algebraic laws are built-in!

Example the interchange law (h1 ⊗ h2) · (l1 ⊗ l2) = (h1 · l1)⊗ (h2 · l2).

Moreover, note that a decomposition of a diagram does not uniquely determine its assembly
process, which makes the non-diagrammatic treatment of processes especially boring.

3



Circuits.

A circuit is a diagram that can be built by composing boxes, including identities and swaps,
by means of vertical and horizontal composition.

Exercise 1

Discuss whether the following circuits are equivalent.

Exercise 2

Prove that

Exercise 3

Show that a circuit is a diagram that contains no directed loops.
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States, effects and scalars.

• States are processes without any inputs, representing preparation procedures.

• Effects are processes without any outputs, representing tests. A test consists of a
question about a system, a verification procedure, and the event of obtaining yes as
the answer, i.e. the assertion that effect occured.

• Composing a state with an effect yields a scalar :

All numbers (naturals, complexes, probabilities, ... ) emerge this way; cf the generalised
Born rule returning the probability that the effect happens, given the system is in a
particular state. Actually this interpretation makes sense in any process theory.

Exercise 4

How do scalars compose?

Exercise 5

Interpret the following equalities (known as the Eckmann-Hilton lemma)

Why do they hold and what do they tell us about scalars?
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Exercise 6

Consider the process theories represented in categories Set and Rel. Characterise states, effects
and scalars in both of them.

Exercise 7

A zero process is a process that verifies the following two absorption laws:

Show that if it exists in a process theory, it is unique. Due to its uniqueness, it can be written
just a 0, ignoring input and output wires.

Monoidal categories.

A strict monoidal category C is a category equipped with a parallel composition operator
⊗ on objects and arrows, i.e. a functor ⊗ : C× C −→ C, and a unit object I such that

• Is associative on both objects and arrows:

(A⊗ B)⊗ C = A⊗ (B⊗ C) and (f⊗ g)⊗ h = f⊗ (g⊗ h)

• Is unital on both objects and arrows:

A⊗ I = I⊗A = A and f⊗ idI = idI ⊗ f = f

• ⊗ and · verify the interchange law.

Furthermore the category is called braided if it comes equipped with a natural isomorphism
(known as the swap arrow)

σA,B : A⊗ B −→ B⊗A

such that

• σA,I = idA

• (idB ⊗ σA,C) · (σA,B ⊗ idC) = σA,B⊗C
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Finally, it is called symmetric if

σB,A · σA,B = idA⊗B

for all objects A and B.

Exercise 8

Express the naturality of σ through a diagram. Draw the commutative diagrams correspond-
ing to the properties defining a symmetric monoidal category.

Exercise 9

A monoidal category is not strict if equalities in the definition of the strict case are relaxed
to natural isomorphisms, making ⊗ associative and unital only up to an isomorphism. Draw the
corresponding diagrams.

Actually, non strict monoidal categories must also assume a number of so-called coherence
conditions that somehow guarantee such isomorphisms behave as expected. In practice, it
can be shown that every monoidal has a strict equivalent, which is of course easier to work
with.

A main result to conclude this lecture: Circuit diagrams are sound and complete for sym-
metric monoidal categories.

• soundness: two arrows are provably equal using the axioms of a symmetric monoidal
category, if they can be expressed by the same circuit,

• completeness: two arrows are expressed by the same circuit, if can be proved equal
using the axioms of a symmetric monoidal category.
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