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Introduction.

This lecture is devoted to the construction of a particular process theory — that of linear
maps, which plays an important role in the study of quantum phenomena. Each type in
this theory comes with a finite orthonormal basis. A basis determines the type dimension.
The existence of at least a type of every dimension, and the fact that all processes of a
given type can be ’summed’ are other characteristics of this process theory. What these
notions — basis, dimension and sum mean in the framework of string diagrams needs to be
clarified. Finally, scalars in the theory of linear maps are complex numbers, thus providing
an example of a theory whose scalars are not self-conjugate. Types in this theory are, as
expected, Hilbert spaces.

Although a main goal of the approach introduced in this series of lectures is to replace
matrices of complex numbers by string diagrams when reasoning about quantum compu-
tation, the whole theory of linear processes can indeed be rephrased in terms of matrices.
The basic observation is that to show two processes equal in this theory it is enough to
look at scalars. Matrices, on their own, provide another example of a process theory,
which is equivalent, as a category, to the process theory of linear maps (recall the notion
of equivalent categories from a previous lecture)1.

Basis.

In the process theory of relations states of a type A can be regarded as subsets of A.
However, two relations can be shown equal by analysing only their composition with a
particular class of states — those corresponding to singleton sets. In general, a basis for a
type A in a process theory is a minimal set of states B such that, for all processes f and g,

(1)

The dimension of a type A is the size of its smallest basis.

1Pictures are taken from Coecke and Kissinger book, Picturing Quantum processes, CUP, 2017.
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A basis is orthonormal if its elements are perfectly distinguishable by testing, i.e. they do
not overlap. Formally, if for all i and j,

Exercise 1

Show that if an orthonormal set of states of a given type satisfies condition (1) for all pairs
of processes, then it is the minimal set to do it, and therefore forms an orthonormal basis (ONB).

Sum.

A process theory has sums if its processes are equipped with an Abelian monoid structure
(+, 0) which preserves adjoints and distributes over diagrams. The last condition subsumes
distributivity of sums with respect to parallel and sequential composition. Graphically, it
means that summations can always be pulled outside as in the following example:

Actually, the summation symbol can freely move around the diagram, just like a scalar.

Exercise 2

Which well-known properties are expressed by the following equations?

Exercise 3
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What is sum in the process theory of relations? Show that scalars in this process theory come
with a ’sum’ and a ’multiplication’ related by a distributive law, the basic structure one associates
to a reasonable notion of a number.

From processes to matrices and back.

Exercise 4

Suppose one wants to prove two processes f, g : A −→ B to be equal. Assuming bases B,
B ′ for A and B, respectively, show that

The result above is interesting: equality of processes is established by comparing a set of
scalars. If both bases are orthonormal, the scalars that uniquely identify a process are the
entries of a matrix representing it,

Dually, processes can be recovered from arbitrary matrices. Suppose a matrix whose entries
are gj

i. Choose orthonormal bases and compute, for each matrix entry, a process

whose matrix has exactly gj
i in position (i, j). The original matrix corresponds to the sum

of all those processes
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Thus,

Let us denote by f the matrix representation of process f. Then, the adjoint, transpose
and conjugate of a process have straightforward matrix representations, as follows,

(f †)ji := (f ij ) (f T)ji := f ij ; f
j

i := (f ji )

Notice that the last two cases resort to a fundamental assumption that bases are self-
conjugate. Without it the resulting matrices would be expressed in terms of the conjugates
of the original bases.

Exercise 5

Show that the matrix representing the sum of a collection of processes Σkfk is the sum
∑

k fk
of matrices fk, where

(Σkfk)
j
i =

∑
k

(fk)
j
i

Given suitable orthonormal bases for its input and output, a process written as

is said to be in matrix form. Clearly, the corresponding matrix is
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The entry (i, j) in the matrix representing the identity process is δi,j. The whole matrix
boils down to the identity matrix. Translating to matrix form we recover the well-known
resolution of the identity decomposition:

The matrix form for the identity process gives a handy way to compute the matrix form
for an arbitrary process as follows

Exercise 6

Prove that a set off states form an orthonormal basis iff, for all i,

Exercise 7

Compute

and interpret the result in the process theory of relations and of linear maps.
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We need now a smooth way to recognise some specific processes in terms of their matrices.
Thus, first note that, given orthonormal bases for the input and output types of a process
f, the columns, respectively rows, of f are the matrices corresponding to the following sets
of states, respectively of effects,

In this framework, a unitary process f sends orthonormal bases to orthonormal bases.
Indeed, for any basis B, the set of states f · i is orthonormal because, being unitary, f is
an isometry which entails

It remains to show that these states form a basis. This amounts to show that two processes
g and h are equal when they agree on all of these states. Assume g · f · i = h · f · i for all i.
Since the set of states i form a basis, we have g · f = h · f. Finally, f being unitary yields

Exercise 8

Show that both columns and rows of a matrix corresponding to a unitary process form orthonor-
mal bases.

The matrices corresponding to self-adjoint processes are easily recognised
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where elements of the diagonal are self-conjugate:

The same is not true for e.g. matrices corresponding to positive processes. However, for the
class of so-called diagonalisable processes, self-adjointness, positivity, and projectors can
be identified from the scalars on the diagonal of the corresponding matrix. A process f is
diagonalisable if there exists a orthonormal basis B such that all basis states are eigenstates
of f, i.e.

This entails

Thus its matrix is a diagonal matrix:

Exercise 9

Show that f is self-adjoint iff all elements in the diagonal are self-conjugate; positive iff all positive;
and a projector if they are all positive and satisfy λi = (λi)

2.

Exercise 10

What is the matrix form of the trace of a process? And of a partial trace?
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Matrices for circuits.

Defining sequential and parallel composition of matrices is in order so that we can have an
idea of how circuits translate into composition of matrices. Thus, the matrix representation
of g · f is the matrix product gf , i.e.

(g · f)ki := Σjg
k
j f

j
i

Actually,

To compute the matrix for f ⊗ g we first need a way to build a basis for a tensor type
A⊗ B, from the bases for B, B ′, of A and B. The set

does the job. To show it forms indeed a basis, assume that any pair of processes with input
type A⊗ B agrees on all the states above, i.e.

or equivalently
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Since B is a basis,

yielding, because B ′ is a basis as well,

and, therefore,

Orthonormality, i.e.

comes from the original bases being orthonormal as well.

The matrix representation of f⊗ g is the Kronecker product of g and f , i.e.

(f ⊗ g)klij := fki g
j
l

the entries being given by

Finally, a note on transposition. Recall the two notions of transposition discussed in a
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previous lecture:

Algebraic transposition (and thus algebraic conjugate) is the one capturing the notion of
transposition in linear algebra. The more usual notion of a rotation, reverses the order,
besides interchanging, as expected, superscripts and subscripts. Actually, transposition of
matrices yields

fklij ⇝ f ijkl rather than fklij ⇝ f jilk

Moreover, the algebraic transpose also keeps the most significant basis state on the left,
and the least significant on the right, as illustrated by

versus

Matrices for string diagrams.

Going from circuits to diagrams entails the need to define matrices for cups and caps.
For any orthonormal basis, we obtain from the matrix form of the identity (the so-called
resolution of the identity)
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because

The dual case comes from taking the adjoint. Note that this result applies to any orthonor-
mal basis, thus, in particular, to the conjugate of the original basis, yielding an equivalent
characterisation

Using both (equivalent) definitions the yanking laws follows immediately. In practice,
however, these details can be avoided by focusing only on self-conjugate basis; graphically,

Once re-written in the usual Dirac notation these equations emerge as the usual definition
of the Bell state and effect.

Exercise 11

Which are the matrices for caps and cup for systems with dimension 2?

Exercise 12

Actually one could take this as the definition of cups and caps for a type A. The yanking
laws are obviously satisfied; for example,

Complete the verification for the remaining laws.
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One may always choose, in a unique way, caps and cups to make a given orthonormal basis
self-conjugate.

Exercise 13

Show that an orthonormal basis is self-conjugate iff

Matrices as a paradigmatic process theory.

Having discussed how matrices can be combined into string diagrams, one may easily
conclude that matrices not only provide a convenient way to represent processes (as e.g.
relations or linear maps), but give rise to process theories themselves. Indeed, given a
suitable notion of scalar N with the usual ’arithmetic’ structure and a possibly trivial
conjugation, matrices over N form a process theory. Types in such a theory are just
natural numbers standing for the number of columns and rows — the role of types in
a process theory is to mediate sequential composition which, in this case, boils down to
matrix multiplication.

Moreover, every process theory with scalars N, in which each type has a finite orthonormal
basis, processes of the same type admit sums, and there is at least one type of each
dimension, is equivalent to the process theory of matrices over N. The word equivalent
stands for an equivalence of categories as introduced earlier in this course.

Scalars for linear maps.

In the introduction to this lecture, we point out the three new elements to consider to
develop a process theory of linear maps: a notion of basis, a sum operation and a specific
choice of scalars as the complex numbers. Let us complete the picture exploring this last
element. Complex numbers provide scalars in which conjugation is not trivial. This means
that the adjoint of a linear map does not coincide with the transpose.

Exercise 14

Show that the positive-definiteness condition in the definition of the inner product, i.e.
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requires the adjoint to be defined as the conjugate transpose.

Thus, this is a process theory in which the three basic notions in string diagrams —
transpose, adjoint, conjugate — are indeed distinct.

This choice of scalars becomes really handy. An example is the well-known dimension
theorem which states that in any process theory which admits a matrix representation (as
discussed above) and whose scalars form a field2, all bases for a given type are the same
size.

Another important example is the following result which states that the composition f† · f
provides a tool to decide whether process f is ·-separable (just as positive-definiteness
mentioned above expresses the ability of number ϕ† ·ϕ to detect if state ϕ is 0). Formally,

Exercise 15

Show that for any linear map f,

This property is a consequence of a fundamental result: the spectral theorem which reads
as follows: All self-adjoint linear maps are diagonalisable, i.e. there is an orthonormal basis
such that

where all ri are real numbers. Moreover, if f is positive (resp. a projector) all ri ≥ 0

(belong to {0, 1}). This is precisely the theorem that, for an orthonormal set, allows to
express each projector P as

2A a field is a set on which addition, subtraction, multiplication, and division are defined and behave
as the corresponding operations on real or complex numbers do.
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Exercise 16

As a corollary of the spectral theorem show that for all self-conjugate bipartite states in the
theory of linear maps there exists an orthonormal basis such that

Similarly, all ri are greater or equal to zero for ⊗-positive states. A crucial observation in this
proof is that, under the process-state duality, self-conjugate (resp, ⊗-positive) bipartite states
correspond to self-adjoint (resp. positive) processes, as discussed in Lecture 5.

Exercise 17

Prove that the property discussed in Exercise 15 does not hold for the process theory of re-
lations. One may observe that the intuitive explanation of this fact is there are not enough
scalars in the process theory of relations to guarantee a diagonal representation for every rela-
tion, exactly the same reason why the spectral theorem does not hold in this theory. Explain in
detail this observation.

The process theory of linear maps.

Summing up, this theory consists of all processes expressed by string diagrams such that

• There is at least a type for each dimension n ∈ N and an orthonormal basis for each
type;

• Processes of the same type admit sums;

• Scalars are the complex numbers C.

A Hilbert space is simply a type in this theory, denoted by Cn for a n-dimensional type.
Notice that the familiar, set-theoretic definition of an Hilbert space can easily be recovered.
The emphasis here, however, as in Category Theory in general, is on stressing the relevance
of processes (arrows) with respect to types (objects).

The real relevant result is the following: linear maps are complete for string diagrams.
Formally, an equation between string diagrams holds for all Hilbert spaces and linear maps
if and only if the string diagrams are the same. Clearly this does not happen for relations:
the equation

λ λ = λ

holds in the process theory of relations although the string diagrams corresponding to both
sides are different. Recall that string diagrams are equal if they can be deformed into each
other.
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Dealing with sums and bases categorically.

The introduction of sums in a process theory is categorically captured by the notion of
enriched category, which denotes a category whose hom-sets (i.e. sets of arrows between a
pair of objects) have some additional structure. In the case of interest here, the appropriate
structure is that a commutative monoid. This means that Hom(A,B), for every pair of
objects A and B, forms a commutative monoid and the monoid structure is compatible
with sequential composition, i.e.

0 · f = f · 0 = 0

h · (f+ g) = (h · f) + (h · g)
(f+ h) · f = (g · f) + (h · f)

At the object level, one may define a notion somehow corresponding to sums of arrows as
follows: A category enriched over a commutative monoid has biproducts if, for each pair of
objects A1 and A2, there exists an object A⊕ B and a pair of maps

πi : A1 ⊕A2 −→ Ai

ιi : Ai −→ A1 ⊕A2

such that
ι1 · π1 + ι2 · π2 = idA1⊕A2

and

πi · ιj =

{
idAj

if i = j

0 otherwise

In a dagger compact closed category, as introduced in a previous lecture, enriched over a
commutative monoid, biproducts are defined in terms of maps

ιi : Ai −→ A1 ⊕A2

satisfying
ι1 · (ι1)† + ι2 · (ι1)† = idA1⊕A2

and

(ι1)
†
i · ιj =

{
idAj

if i = j

0 otherwise

Interestigly enough, taking A1 = A2 = I these conditions boil down to
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which means that the set of states labelled by ιj forms a two-dimensional orthonormal
basis.

Being an associative operator, one may define biproducts of an arbitrary, finite, number of
objects. In particular, objects that can be written as

A ∼= I⊕ I⊕ I · · · ⊕ I

have a n-dimensional orthonormal basis.

An object that cannot be written as a biproduct of two non-zero objects is classified as
irreducible. The existence of irreducible objects are therefore connected to the existence
of orthonormal bases. The reason linear maps (and relations) have orthonormal bases for
every type is that in their theories the only irreducible is the trivial object I.
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