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Introduction.

String diagrams are circuits in which inputs (outputs) can be connected to inputs (outputs).
Such diagrams can be interpreted by process theories capturing typical characteristics of
quantum theory, namely non-separability and the duality between processes and bipartite
states. This lecture introduces the extended circuit language and the representation of
a number of familiar concepts: transpose, trace, partial trace, adjoint, conjugate, inner
product. Next it introduces unitary and positive processes and discusses how several
phenomena in quantum theory can be expressed in string diagrams. The lecture ends
with a brief introduction to dagger compact categories, the categorical framework which
provides a suitable axiomatisation of string diagrams1.

Separability.

The whole is more than the sum of parts:

A state is ⊗-separable if there exist two states into which it can be decomposed in parallel
through ⊗:

1Pictures are taken from Coecke and Kissinger book, Picturing Quantum processes, CUP, 2017.
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Exercise 1

Determine which states are ⊗-separable in the theory of functions and in the theory of rela-
tions.

A state is ·-separable if there exist two states into which it can be decomposed sequentially
through ·:

Both notions of separability are related as follows:

and
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Exercise 2

Determine which states are ·-separable in the theory of functions. Explain in what sense a
process theory in which every process is ·-separable becomes trivial.

String diagrams.

String diagrams are circuits equipped with a special cup state ∪A and a special cap effect
∩A, for every type A, such that

which can be written as

which form the so-called yanking equations.

If they hold, i.e. in any string diagram, the following maps, which convert processes into
states and back, are mutually inverse

Exercise 3

Verify this statement and its converse.
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This means that string diagrams form the language of process theories in which processes
and bipartite states are in bijective correspondence. One may also say that a string diagram
is a circuit whose inputs (outputs) can be connected to inputs (outputs).

Exercise 4

Show that

Exercise 5

Which relations correspond to ∪A and ∩A in the process theory of relations?

We will introduce now a number of basic notions one got used to in linear algebra and quan-
tum theory formulated in terms of string diagrams. Later they will be suitably interpreted
in concrete process theories.

Meeting old friends: transposition

The transpose of a process f : A −→ B is the process

Clearly (but differently from the inverse process) it can be realised by a string diagram
involving f:
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which corresponds to the following expression

fT = (idA ⊗ ∩B) · (idA ⊗ f⊗ idB) · (∪A ⊗ idB)

Exercise 6

Show that

• Transposition is involutive.

• The transpose of a cap is a cup and vice-versa.

A transpose can be built in the diagram notation as follows, corresponding to a 180 rotation:

Exercise 7

Show that

i.e. boxes can slide along caps and cups.

From an operational point of view, transposition can be regarded as a perfect correlation:
as soon as a component of the system obtains an effect, the other component will be in
the corresponding state:
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Exercise 8

What is the transpose of a scalar?

However, to transpose bipartite states requires a special care. Actually,

leads to a type mismatch:

Alternative cross-cup/cap are defined as follows,

which are well-behaved wrt yanking

leading to an alternative notion of transposition, called the algebraic transpose:
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Meeting old friends: trace and partial trace

Exercise 9

Formulate as an expression the statement of the theorem whose proof is as follows:
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Meeting old friends: adjoints

The adjoint of a state is the effect testing for it, which in a string diagram is represented
by a vertical reflexion:

Thus the following are equivalent

i.e. if a process transforms a state into another, its adjoint transforms the corresponding
effects.

Properties:

Note that the concrete definition of an adjoint depends on the process theory at hands.
Clearly, it is expected

• to be involutive

• and to reflect diagrams

It should also be compatible with the intuition that it sends a state to the effect that tests
for that state. Formally, it should be definite, i.e.
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which means that the only situation in which it is impossible to get an affirmative answer
when testing a state for itself is when the original state is itself impossible.

Exercise 10

What are adjoints in the theory of relations? Do we really need the concept of an adjunction in
this theory?

Meeting old friends: conjugates

Conjugates are combinations of adjoints with transposes (by any order), and therefore are
expressed in string diagrams by an horizontal reflection.

• transpose, then adjoin

• adjoin, then tranpose

The conjugate of a process is the transpose of its adjoint (or the adjoint of its tranposition),
depicted graphically as
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As transposes and adjoints, conjugates mirrors entire diagrams in both vertical and hori-
zontal directions:

Note that conjugating a process with multiple inputs and outputs is order-reversing

This can be avoided by replacing the transpose by the algebraic transpose, thus defining
the algebraic-conjugate as follows

f := (fT)† = (f†)T

Processes that are equal to their own (algebraic) conjugates are said to be (algebraic)
self-conjugates:
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Exercise 11

Show that caps and cups are (algebraic) self-conjugates.

Exercise 12

Discuss which relations are (algebraic) self-conjugate.

Exercise 13

What is the conjugate of a scalar?

Summing up
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Meeting old friends: inner product

The inner product

has a clear intuitive meaning: Since the adjoint of a state gives the effect that tests for
that state, the inner product expresses testing state ψ for being state ϕ.

• Orthonormal states:

• The squared norm is the inner product with itself:

• Normalised state:

The inner product computes how much similar states are:
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Exercise 14

Discuss the following diagrams in the process theory of relations:

Properties

⟨ϕ|ψ⟩ = ⟨ψ|ϕ⟩ conjugate symmetric

⟨ϕ|α ·ψ⟩ = α · ⟨ψ|ϕ⟩ linearity (preserves scalars on the second argument)

⟨α · ϕ|ψ⟩ = α · ⟨ψ|ϕ⟩ conjugate linearity (conjugates scalars on the first argument)

⟨ϕ|ϕ⟩ = 0 ⇔ |ϕ⟩ = 0 positive definite

Diagrammatic proofs:
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Unitary processes.

A process U : A −→ B is unitary if U† is its inverse, i.e. U† · U = idA and U · U† = idB
Unitary processes are the ones that preserve the measure of commonality given by the
inner product.

Exercise 15

Show that a unitary U preserves the inner product.

Positive processes.

A process f : A −→ A is positive if there exists another process g : A −→ B such that
f = g† · g, i.e.

The definition entails that positive processes are self-adjoint as they are invariant under
vertical reflection. Note that the scalar representing the inner product of a state with itself
is positive in this sense, which explains the qualifier positive when one requires the inner
products to be positive definite, i.e. ⟨ϕ|ϕ⟩ = 0 ⇔ |ϕ⟩ = 0.

Exercise 16

Show that if f is a positive process, Tr(f) = 0⇒ f = 0, i.e.
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Exercise 17

In linear algebra f is positive if, for every ϕ, the number ⟨ϕ|f|ϕ⟩ is positive. Relate this for-
mulation to the definition just given.

In the previous lecture we have noted that string diagrams express a duality (i.e. a bijective
correspondence) between processes and bipartite states, cf.

The state corresponding, under such a duality, to a positive process carried itself a positive
structure in the horizontal dimension defined as follows: a bipartite state is ⊗-positive if
there exists a process g such that

Thus,

Exercise 18

Verify the statement above, depicted as follows

15



The definition extends to processes: f is ⊗-positive if there exists a process g such that

Exercise 19

Show this is equivalent to the existence of a process g ′ such that

Projectors.

A process P positive and idempotent, i.e. such that

is called a projector.

Any normalised state ψ yields a projector |ψ⟩⟨ψ| depicted as

Exercise 20

Show this construction yields a positive and idempotent process.
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In general, resorting to the duality between processes and bipartite states, one may define
the notion of a separable projector as follows: A process f : A −→ A yields a separable
projector via

if state

is normalised. Note that a separable projector in linear algebra is exactly one that projects
onto a one-dimensional vectorial space.

Exercise 21

Show that

where g = f3 · f4 · fT2 · f
†
3 · f1 · f1 · f2

Exercise 22

Show that

where g = fT3 · f
†
5 · fT4 · f

†
6 · f2 · f4 · f1 · f3

Exercise 23
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Show that one may define a projector, alternatively, as a self-adjoint idempotent or as a pro-
cess P satisfying

Expressing quantum phenomena in string diagrams.

1. Non-separable states exist.

In a theory described by string diagrams, if all bipartite states are ⊗-separable, then all
processes will be ·-separable, therefore making the theory trivial.

Proof.

for state ϕ = f ·ψ2 and effect π = (ψ1)
T . The second step assumes that cup is ⊗-separable.

2. The non-cloning theorem.

Let us define a cloning process ∆ as one that makes two copies of its input state2

(1)

We formulate three reasonable assumptions on such a process:

2Note that in quantum information a cloning process is usually defined as a two inputs process whose
second input gets overwritten by the first one. Our version captures the same phenomenon in a somehow
less constrained way.

18



A (swapping does not affect cloning)

B (a composite is cloned by cloning each of its components)

C (the process theory contains at least a normalised state)

The no-go theorem is as follows: If a process theory described by string diagrams contains
a cloning process for a type A, then every process with input A must be ·-separable.

Proof.

=B =A

= =B =

where all wires are of type A. Converting outputs into inputs in both sides of the equation
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above yields

Then, by assumption C, equals

The non-cloning theorem is folklore in quantum information. But what happens in the
theory of relations? A cloning function is easily realised: ∆(a) = (a, a). Denoting by
x : 1 −→ A the constant function that always returns x, equation (1) defining a cloning
process instantiates as follows:

∆(a) = ∆(a) = (a, a) = a× a

which is obviously true. Consider now a cloning relation ∆ = {(a, (a, a)) | a ∈ A}.
Equation (1) now reads

{(∗, (a, a, )) | a ∈ A} = {(∗, a) | a ∈ A}× {(∗, a) | a ∈ A}

which is no longer true: the right hand side includes pairs ((∗, a), (∗, a)) which are in bijec-
tive correspondence with pairs (∗, (a, a)) in the left hand side, but also e.g. ((∗, a), (∗, b))
for a ̸= b. Note that in both process theories ⊗ is Cartesian product ×, but in the theory
of relations this is not a categorical product.
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3. A first version of teleportation.

Assume Aleks possesses a state to be transmitted to Bob, with whom he shares a cup state.
A solution may be

However, effects arise (to discuss later) as the result of a (quantum) measurement ; thus
Aleks might not get the cap itself, but the cap affected by some non-deterministic error
from a given set of possible errors. Then Aleks needs to inform Bob of the error, i.e. to
send a single index i so that Bob can choose the right error-corrector. Actually, assuming
each Ui to be unitary, one has

leading to

Example: Teleportation in the theory of relations

The shared cup represents a pair of envelops, one for Aleks another for Bob, which inside
have either a 0 or a 1. They do not know which bit is it, but they do know the bit is the
same in both envelops. Formally, the shared cup represents this fact through the following
relation

∪ = {(∗, (0, 0)), (∗, (1, 1))}
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Aleks informs if the bit stored in his envelope is equal or different of his own bit ψ, which
corresponds to the following effects, respectively:

M0 = {((0, 0), ∗), ((1, 1), ∗} M1 = {((0, 1), ∗), ((1, 0), ∗)}

From this information Bob may conclude if Alexs bit is the one in his own envelop or its
complement. The correcting processes are, respectively,

U0(x) = x U1(x) = 1− x

Int the theory of relations this corresponds to what is known as a one-time pad encryp-
tion: Aleks sends public data — his bit encrypted by the parity measurement. Bob receives
private data (after the right correction). A shared encryption key is used. In quantum tele-
portation Aleks sends classical data, Bob receives quantum data, using a shared quantum
state.

Dual objects.

String diagrams are sound and complete for dagger compact closed categories. These cat-
egories assume that each type A has a dual, A∗ to which a cup state and a cap effect

are associated and satisfy

which, just by deformation, also yields

So, (A∗)∗ = A and, thus
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When types are self-dual, i.e. A = A∗, as we have considered before, one gets two ways to
define a cup for A, boiling down to the familiar equation

Note that from this more general perspective the typing problem with transposition of
nested caps/cups vanishes by making

(A⊗ B)∗ = B∗ ⊗A∗

However, the analogy with wires becomes less obvious. The problem is (graphically) over-
come through the introduction of a direction to the wires:

Thus, caps and cups are once again represented by wires, but directed wires:

And their axioms becomes

A process f : A⊗ B∗ −→ C∗ ⊗D is depicted as

A directed string diagram allows any connection between two wires provided that both
types and directions are compatible: types must coincide when connecting an input to an
output, but should be dual when connecting ports of different polarity.
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Example: The theory of linear maps

For each finite-dimensional vector space A, its dual A∗ is the vector space of linear maps
form A to C, where sum and scalar multiplication are defined pointwise3. A basis for A∗

is also obtained from the basis {ui | i ∈ I} of A as {ui | i ∈ I} such that uiuj = δi,j. We now
define a cap effect and cup state as follows:

∑
i

ui ⊗ ui t(v), for each v⊗ t ∈ A⊗A∗

Transposing a process f : A −→ B with respect to these new caps and cups, yields

which corresponds to pre-composition with f, i.e.

f∗(t) = t · f

Dagger compact closed categories.

A symmetric monoidal category C is compact closed if for each object A there is another
object A∗ and arrows

ϵA : A⊗A∗ −→ I and ηA : I −→ A∗ ⊗A

such that

(ϵa ⊗ idA) · (idA ⊗ ηA) = idA

(idA∗ ⊗ ϵA) · (ηA ⊗ idA∗) = idA∗

A dagger compact closed category is a compact closed category C equipped with a dagger
functor † : C −→ C such that

ϵ†A = ηA∗

where a dagger functor is defined by

A† = A and (f : A −→ B)† = f† : B −→ A

3i.e. (t+ s)(v) = t(v) + s(v) and α(t(v)) = αt(v).
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and, additionally, is involutive and respects the symmetric monoidal structure, i.e.

f = (f†)†

(g · f)† = f† · g†

(f⊗ g)† = f† ⊗ g†

σ†
A,B = σB,A
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