
Semantics for Hybrid Components

Renato Neves
joint work with Luís Barbosa, José Proença, and Sergey Goncharov

Table of Contents

Overview

Hybrid Automata as Coalgebras

Hybrid Iteration in Programming

Hybrid Components

Conclusions and Future Work

Renato Neves Overview 2 / 47

This Talk

An overview of categorical constructions for interpreting hybrid
components via

• Coalgebra
• (Elgot) Monads

Iteration

Renato Neves Overview 3 / 47

Hybrid Components

Components
Standalone computational units, typically with an internal state,
that interact with environment

Hybrid Components
If a component’s environment contains physical processes (e.g.
velocity, time) we qualify the component as hybrid

to emphasise the discrete-continuous interaction

Renato Neves Overview 4 / 47

Hybrid Components

Components
Standalone computational units, typically with an internal state,
that interact with environment

Hybrid Components
If a component’s environment contains physical processes (e.g.
velocity, time) we qualify the component as hybrid

to emphasise the discrete-continuous interaction

Renato Neves Overview 4 / 47

The Essence of Hybrid Components

1 2 3 4 5 6

1
2
3
4

Sequence of events !

+
1 2 3 4 5 6

1
2
3
4

Time !

Often found in the form of

• cruise-controllers, thermostats, medical devices, . . .
• impact-based physical systems

Described via differential equationsDescribed via classical methods of computation

Renato Neves Overview 5 / 47

Formalisms for Hybrid Components

Hybrid Automata

p′ = v
v′ = g
p ≥ 0

p = 0 ∧ v ≤ 0,
v := v × −0.5ff

Hybrid (Component-based) Programming

while true do
{

if b then heatReactor()
else coolReactor()

}

Renato Neves Overview 6 / 47

Talk’s Overview

We will provide semantics to the two formalisms

• first for hybrid automata
• then for hybrid component-based programming

Renato Neves Overview 7 / 47

Hybrid Automata and its Variants

Hybrid automata: standard formalism for modelling hybrid systems

Underlying notion has several variants

• deterministic
• non-deterministic
• probabilistic
• reactive
• weighted
• . . .

Unfortunately: no uniform semantics for hybrid automata

To be formally detailed later on

Renato Neves Overview 8 / 47

Hybrid Automata and Coalgebra

Coalgebra is a uniform theory of state-based transition systems

We use it to tackle the propounded issue, and obtain uniformly

• semantics
• a notion of bisimulation
• a notion of observational behaviour
• and a regular-expression-like language

Renato Neves Overview 9 / 47

Hybrid Iteration

Suitable semantics for hybrid iteration is difficult to establish

Previous work crucially relies on nondeterminism and gives rise to
problematic equations, e.g.

while true do { p } = 0

Alternative (deterministic) semantics via final coalgebra + weak
bisimilarity. It revolves around two monads for hybrid computation

Ĥ intensional to extensional
−−−−−−−−−−−−−−−!! H

Abstracts away intermediate computational steps

Renato Neves Overview 10 / 47

Hybrid Iteration + Internal State

We take a monad able to handle internal states in programming

Then combine it with the extensional hybrid monad, and show that
the new monad supports iteration. This yields . . .

an interpretation domain for hybrid components in programming

Renato Neves Overview 11 / 47

Table of Contents

Overview

Hybrid Automata as Coalgebras

Hybrid Iteration in Programming

Hybrid Components

Conclusions and Future Work

Renato Neves Hybrid Automata as Coalgebras 12 / 47

The Essence of Hybrid Automata

They extend non-deterministic finite automata with

• differential equations (for describing continuous dynamics)
• location invariants (for restricting the latter)
• assignments (for describing discrete dynamics)
• guards (for restricting the latter)

p′ = v
v′ = g
p ≥ 0

p = 0 ∧ v ≤ 0,
v := v × −0.5ff

Renato Neves Hybrid Automata as Coalgebras 13 / 47

Hybrid Automata Formally

Hybrid automaton is a tuple (L, E , X , dyn, inv , asg , grd) where

• L is a finite set of locations, E is a transition relation
E ⊆ L × L, X is a finite set of real-valued variables

• dyn is a function that associates to each location a system of
differential equations over X

• inv is a function that associates to each location its invariant
(a predicate over the variables in X)

• asg is a function that given an edge it returns an assignment
command over X

• grd is a function that given an edge it returns a guard (i.e. a
predicate over the variables in X)

Renato Neves Hybrid Automata as Coalgebras 14 / 47

Set-based Coalgebra

Definition (Coalgebra)
A function X ! FX where F : Set ! Set is a functor

Different F , different transition systems

• X ! IdX (deterministic)
• X ! PωX (non-deterministic)
• X ! Pω(A × X) (labelled non-deterministic)
• X ! DωX (probabilistic)
• . . .

Renato Neves Hybrid Automata as Coalgebras 15 / 47

Set-based Coalgebra

Definition (Coalgebra)
A function X ! FX where F : Set ! Set is a functor

Different F , different transition systems

• X ! IdX (deterministic)
• X ! PωX (non-deterministic)
• X ! Pω(A × X) (labelled non-deterministic)
• X ! DωX (probabilistic)
• . . .

Renato Neves Hybrid Automata as Coalgebras 15 / 47

The Message of Coalgebra

Coalgebra serves as a uniform theory of transition systems, whose
level of abstraction is functoriality

It includes,

• notions of (bi)simulation and observational behaviour
• techniques for minimisation
• notions of regular-expression
• . . .

Renato Neves Hybrid Automata as Coalgebras 16 / 47

A Surprisingly Useful Remark

Hybrid automata are nothing more than classical, non-deterministic
automata with decorated states and edges, i.e.

L ! Pω(L × Asg × Grd) × DifEq × Inv

This immediately provides

• a uniform notion of hybrid automata,
• a uniform notion of (bi)simulation and regular-expression

More details in [Neves and Barbosa, 2017]

Renato Neves Hybrid Automata as Coalgebras 17 / 47

A Zoo of Hybrid Automata

L ! F (L × Asg × Grd) × DifEq × Inv

Functor Type
Id Deterministic
Pω Classical
Dω Markov
PωDω Probabilistic
Wω Weighted

Renato Neves Hybrid Automata as Coalgebras 18 / 47

Uniform Semantics for Hybrid Automata

Many variants of hybrid automata come equipped with a semantics

We can encode these uniformly as a functor

J−K : HybAt(F) −! A Category of Coalgebras

Transition systems involving sols. of diff. eqs.

Renato Neves Hybrid Automata as Coalgebras 19 / 47

Preliminaries

Three assumptions (last two used merely to simplify presentation)

Unique Solutions
The function dyn only outputs systems of differential equations
with exactly one solution. This induces a function

flow : L × Rn × [0, ∞) ! Rn

Urgent Transitions
As soon as an edge is enabled the current location must switch

No Invariants
The invariants of all locations are true

Renato Neves Hybrid Automata as Coalgebras 20 / 47

The Semantics

L × Rn ! F (L × Asg × Grd) × DifEq

⇒ L × Rn ! F (L × Asg × Grd) × (Rn)[0,∞)

⇒ L × Rn ! F
(
L × Asg × Grd × (Rn)[0,∞)

)
⇒ L × Rn ! F

(
L × Asg ×

∐
d∈[0,∞)(Rn)[0,d) × Rn + (Rn)[0,∞)

)
⇒ L × Rn ! F

(
L ×

∐
d∈[0,∞)(Rn)[0,d) × Rn + (Rn)[0,∞)

)
⇒ L × Rn ! F

(
L × Rn ×

∐
d∈[0,∞)(Rn)[0,d) + (Rn)[0,∞)

)

We obtain a coalgebra for F
(

− ×
∐

d∈[0,∞)(Rn)[0,d) + (Rn)[0,∞)
)

Space of continuous trajectories

Tensorial strength

Renato Neves Hybrid Automata as Coalgebras 21 / 47

Revisiting the Bouncing Ball (F = Id)

Via the semantics functor J−K we obtain the following picture

bb =


p′ = v
v′ = g
p ≥ 0

p = 0 ∧ v ≤ 0,
v := v × −0.5ff

 behJbbK(∗, (5, 0)) = . . .

Position and velocity

0 0.2 0.4 0.6 0.8 10

1

2

3

4

5

time

po
s

1st element

0 0.2 0.4 0.6 0.8 10

1

2

3

4

5

time

po
s

2nd element

0 0.2 0.4 0.6 0.8 10

1

2

3

4

5

time
po

s

3rd element

Renato Neves Hybrid Automata as Coalgebras 22 / 47

Main Theorem

Our generalised semantics covers the established semantics for

• deterministic
• non-deterministic
• and probabilistic hybrid automata

We have an analogous result for (bi)simulation

Renato Neves Hybrid Automata as Coalgebras 23 / 47

Main Theorem

Our generalised semantics covers the established semantics for

• deterministic
• non-deterministic
• and probabilistic hybrid automata

We have an analogous result for (bi)simulation

Renato Neves Hybrid Automata as Coalgebras 23 / 47

Table of Contents

Overview

Hybrid Automata as Coalgebras

Hybrid Iteration in Programming

Hybrid Components

Conclusions and Future Work

Renato Neves Hybrid Iteration in Programming 24 / 47

Syntax

Fix a stock of variables X = {x1, . . . , xn}. Then we have

Linear Terms
LTerm(X) ∋ r | r · x | t + s

Atomic Programs
At(X) ∋ x := t | x′

1 = t1, . . . , x′
n = tn for t

Hybrid Programs
Prog(X) ∋ a | p ; q | if b then p else q | while b do { p }

real number

"run" the system of differential equations for t seconds

Renato Neves Hybrid Iteration in Programming 25 / 47

Key Aspects of the Semantics

How to interpret a hybrid program p?

Jx′ = 1 for 1K : R −! (trajectories over R)

Signature of the denotation suggests the use of (Elgot) monads

i.e. functions from a time-domain into R

Renato Neves Hybrid Iteration in Programming 26 / 47

Key Aspects of the Semantics

How to interpret a hybrid program p?

Jx′ = 1 for 1K : R −! (trajectories over R)

Signature of the denotation suggests the use of (Elgot) monads

i.e. functions from a time-domain into R

Renato Neves Hybrid Iteration in Programming 26 / 47

Elgot Monads in a Nutshell

A monad T on Set is called Elgot if it has an iteration operator

f : X ! T (Y + X)
f † : X ! TY

that satisfies a certain set of laws

Intuitively, f † iterates over f until obtaining an output of type Y

Renato Neves Hybrid Iteration in Programming 27 / 47

Semantics without Iteration

Let
∑

d∈[0,∞)(Rn)[0,d) be the set of trajectories

It induces a monad on Set

X 7! µγ.
(∑

d∈[0,∞)(Rn)[0,d) × γ + X
)

∼=
(∑

d∈[0,∞)(Rn)[0,d)
)∗

× X

The fixpoint expression says a program either produces a trajectory
and resumes or terminates with a value of type X

Kleisli composition amounts to concatenation of lists of trajectories

Renato Neves Hybrid Iteration in Programming 28 / 47

Semantics without Iteration

Let
∑

d∈[0,∞)(Rn)[0,d) be the set of trajectories

It induces a monad on Set

X 7! µγ.
(∑

d∈[0,∞)(Rn)[0,d) × γ + X
)

∼=
(∑

d∈[0,∞)(Rn)[0,d)
)∗

× X

The fixpoint expression says a program either produces a trajectory
and resumes or terminates with a value of type X

Kleisli composition amounts to concatenation of lists of trajectories

Renato Neves Hybrid Iteration in Programming 28 / 47

Semantics without Iteration

Denotations JpK become functions of the type

JpK : Rn −!
(∑

d∈[0,∞)(Rn)[0,d)
)∗

× Rn

Example (with n = 1)

Jx′ = 1 for 1K(0) = ([λt ∈ [0, 1). 0 + t]︸ ︷︷ ︸
list of size 1

, 1)

Jx′ = 1 for 1 ; x′ = 1 for 1K(0)
= ([λt ∈ [0, 1). 0 + t, λt ∈ [0, 1). 1 + t]︸ ︷︷ ︸

list of size 2

, 2)

Jwhile true do {x′ = 1 for 1}K = ?

Renato Neves Hybrid Iteration in Programming 29 / 47

Semantics without Iteration

Denotations JpK become functions of the type

JpK : Rn −!
(∑

d∈[0,∞)(Rn)[0,d)
)∗

× Rn

Example (with n = 1)

Jx′ = 1 for 1K(0) = ([λt ∈ [0, 1). 0 + t]︸ ︷︷ ︸
list of size 1

, 1)

Jx′ = 1 for 1 ; x′ = 1 for 1K(0)
= ([λt ∈ [0, 1). 0 + t, λt ∈ [0, 1). 1 + t]︸ ︷︷ ︸

list of size 2

, 2)

Jwhile true do {x′ = 1 for 1}K = ?
Renato Neves Hybrid Iteration in Programming 29 / 47

Semantics with Iteration

Instead of using the least fixpoint we use the greatest

X 7! νγ.
(∑

d∈[0,∞)(Rn)[0,d) × γ + X
)

∼=
(∑

d∈[0,∞)(Rn)[0,d)
)∗

× X +
(
(
∑

d∈[0,∞)(Rn)[0,d)
)ω

This is an instance of a universal construction which tells that

• the functor above is also a monad (henceforth denoted by Ĥ)
• the monad supports a partial iteration operator

f : X ! Ĥ(Y + X)
f † : X ! ĤY

Renato Neves Hybrid Iteration in Programming 30 / 47

Semantics with Iteration

f : X ! Ĥ(Y + X)
f † : X ! ĤY

f † iterates over f until the latter outputs a value of type Y ; and
concatenates all lists of trajectories produced along the way

Example (with n = 1)

Jwhile true do {x′ = 1 for 1}K(0)
= [λt ∈ [0, 1). 0 + t, λt ∈ [0, 1). 1 + t, λt ∈ [0, 1). 2 + t, . . .]︸ ︷︷ ︸

infinite list of trajectories

Renato Neves Hybrid Iteration in Programming 31 / 47

Going Extensional

The proposed semantics is intensional e.g.

(x′ = 1 for 1) ; (x′ = 1 for 1) ̸= (x′ = 1 for 2)

We wish to abstract away from invisible intermediate steps

This amounts to ‘coherently’ turning a sequence of trajectories
into a single trajectory

Renato Neves Hybrid Iteration in Programming 32 / 47

From a Sequence of Trajectories into a Single Trajectory

Concatenation of Trajectories

(λt ∈ [0, d1). f1(t)) ++ (λt ∈ [0, d2). f2(t))
= λt ∈ [0, d1 + d2). if t < d1 then f1(t) else f2(t − d1)

Infinite Concatenation of Trajectories

f1 ++ f2 ++ · · · = λt ∈ [0,
∑

i∈Ndi). (f1 ++ · · · ++ fj)(t) where
j ≥ 1 is the smallest integer s.t. t <

∑
i≤jdi

Renato Neves Hybrid Iteration in Programming 33 / 47

A Retraction Emerges

The previous operation induces a retraction

Ĥ
ρ
((((

iI
ν

hh

(
X 7!

∑
d∈[0,∞)(Rn)[0,d) × X +

∑
d∈[0,∞](Rn)[0,d)

)
ρ resorts to concatenation of trajectories and ν is defined as

inl(f , x) 7! inl([f], x)
inr(f) 7! inr[f[0,1), f[1,2), . . .] if duration of f equals ∞
inr(f) 7! inr[f , !, !, . . .] otherwise

Denote the functor on the right-hand side by H

Renato Neves Hybrid Iteration in Programming 34 / 47

An Extensional Hybrid Monad

Ĥ
ρ (to extensional)

((((

iI
ν

hh H

H inherits from the monad Ĥ (through ν and ρ)

• Kleisli composition
• an iteration operator

f : X ! H(Y + X)
f † : X ! HY

Renato Neves Hybrid Iteration in Programming 35 / 47

Interpretation via H

Interpretation via H validates the aforementioned equality

(x′ = 1 for 1) ; (x′ = 1 for 1) = (x′ = 1 for 2)

and other expected ones, e.g.

while true do {x′ = 1 for 1} = while true do {x′ = 1 for 2}

Also it gives rise to different kinds of while-loop . . .

Renato Neves Hybrid Iteration in Programming 36 / 47

Interpretation via H

Interpretation via H validates the aforementioned equality

(x′ = 1 for 1) ; (x′ = 1 for 1) = (x′ = 1 for 2)

and other expected ones, e.g.

while true do {x′ = 1 for 1} = while true do {x′ = 1 for 2}

Also it gives rise to different kinds of while-loop . . .

Renato Neves Hybrid Iteration in Programming 36 / 47

A Taxonomy of While Loops

Non-progressive Progressive Zeno

Divergent
while (true) {
x := x + 1 }

while (true) {
x := x + 1 ; (wait ϵ) }

ϵ := 1
while (true) {
x := x + 1 ; (wait ϵ)
ϵ := ϵ

2 }

Convergent
x := 0
while (x ≤ 10) {
x := x + 1 }

x := 0
while (x ≤ 10) {
x := x + 1 ; (wait ϵ) }

N.A.

Renato Neves Hybrid Iteration in Programming 37 / 47

The tool Lince

An implementation of the semantics available at

http://arcatools.org/assets/lince.html#fulllince

More details in [Goncharov et al., 2020]

Renato Neves Hybrid Iteration in Programming 38 / 47

http://arcatools.org/assets/lince.html#fulllince

Table of Contents

Overview

Hybrid Automata as Coalgebras

Hybrid Iteration in Programming

Hybrid Components

Conclusions and Future Work

Renato Neves Hybrid Components 39 / 47

Hybrid Components

We wish to combine the notion of internal state with that of
hybrid behaviour

Useful for studying (the orchestration of) computational units that
interact with physical processes

while true do
{

if f
(
readSens1(), readSens2()

)
then heatReactor()
else coolReactor()

}

Renato Neves Hybrid Components 40 / 47

The State Monad

Let S be a set of states

Functorial part defined by X 7! (S × X)S

Kleisli composition amounts to carrying the current state from one
computation to another

Does not support iteration

Renato Neves Hybrid Components 41 / 47

State Monad + Extensional Hybrid Monad

General categorical results allow us to combine both monads

The functorial part of the combined monad is given by

X 7! (H(S × X))S

Kleisli composition is a combination of the previous compositions

A hybrid component c : A ! B is interpreted as a map

JcK : JAK ! (H(S × JBK))S

Renato Neves Hybrid Components 42 / 47

State Monad + Extensional Hybrid Monad

General categorical results allow us to combine both monads

The functorial part of the combined monad is given by

X 7! (H(S × X))S

Kleisli composition is a combination of the previous compositions

A hybrid component c : A ! B is interpreted as a map

JcK : JAK ! (H(S × JBK))S

Renato Neves Hybrid Components 42 / 47

State + Hybrid Iteration in Programming

The combined monad inherits iteration from the hybrid one

f : X ! (H(S × (Y + X)))S

⇒ f : X × S ! H(S × (Y + X))
⇒ f : X × S ! H(S × Y + S × X)
⇒ f † : X × S ! H(S × Y)
⇒ f † : X ! (H(S × Y))S

Theorem
The combined monad is Elgot

Renato Neves Hybrid Components 43 / 47

Table of Contents

Overview

Hybrid Automata as Coalgebras

Hybrid Iteration in Programming

Hybrid Components

Conclusions and Future Work

Renato Neves Conclusions and Future Work 44 / 47

Conclusions and Future Work

We saw how to interpret hybrid behaviour in different settings

• hybrid automata
• hybrid while-language
• while-language + hybrid components

Currently working on the extension of the previous results to a
quantitative setting

• quantitative bisimulation
• probabilities
• stability

Renato Neves Conclusions and Future Work 45 / 47

Funding

This talk was financed by the ERDF - European Regional Development
Fund through the Operational Programme for Competitiveness and
Internationalisation - COMPETE 2020 under the Portugal 2020
Partnership Agreement and by National Funds through the FCT -
Fundação para a Ciência e a Tecnologia, I.P. (Portuguese Foundation for
Science and Technology) within project IBEX, with reference
PTDC/CCI-COM/4280/2021.

Renato Neves Conclusions and Future Work 46 / 47

References i

Goncharov, S., Neves, R., and Proença, J. (2020).
Implementing hybrid semantics: From functional to
imperative.
In Pun, V. K. I., Stolz, V., and Simão, A., editors, Theoretical
Aspects of Computing - ICTAC 2020 - 17th International
Colloquium, Macau, China, November 30 - December 4, 2020,
Proceedings, volume 12545 of Lecture Notes in Computer
Science, pages 262–282. Springer.

Neves, R. and Barbosa, L. S. (2017).
Languages and models for hybrid automata: A
coalgebraic perspective.
Theoretical Computer Science.

Renato Neves Conclusions and Future Work 47 / 47

	Overview
	Hybrid Automata as Coalgebras
	Hybrid Iteration in Programming
	Hybrid Components
	Conclusions and Future Work

