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This Talk

An overview of categorical constructions for interpreting hybrid
components via

• Coalgebra
• (Elgot) Monads

Iteration
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Hybrid Components

Components
Standalone computational units, typically with an internal state,
that interact with environment

Hybrid Components
If a component’s environment contains physical processes (e.g.
velocity, time) we qualify the component as hybrid

to emphasise the discrete-continuous interaction
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The Essence of Hybrid Components
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Time !

Often found in the form of

• cruise-controllers, thermostats, medical devices, . . .
• impact-based physical systems

Described via differential equationsDescribed via classical methods of computation
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Formalisms for Hybrid Components

Hybrid Automata

p′ = v
v′ = g
p ≥ 0

p = 0 ∧ v ≤ 0,
v := v × −0.5ff

Hybrid (Component-based) Programming

while true do
{

if b then heatReactor()
else coolReactor()

}
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Talk’s Overview

We will provide semantics to the two formalisms

• first for hybrid automata
• then for hybrid component-based programming
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Hybrid Automata and its Variants

Hybrid automata: standard formalism for modelling hybrid systems

Underlying notion has several variants

• deterministic
• non-deterministic
• probabilistic
• reactive
• weighted
• . . .

Unfortunately: no uniform semantics for hybrid automata

To be formally detailed later on
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Hybrid Automata and Coalgebra

Coalgebra is a uniform theory of state-based transition systems

We use it to tackle the propounded issue, and obtain uniformly

• semantics
• a notion of bisimulation
• a notion of observational behaviour
• and a regular-expression-like language
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Hybrid Iteration

Suitable semantics for hybrid iteration is difficult to establish

Previous work crucially relies on nondeterminism and gives rise to
problematic equations, e.g.

while true do { p } = 0

Alternative (deterministic) semantics via final coalgebra + weak
bisimilarity. It revolves around two monads for hybrid computation

Ĥ intensional to extensional
−−−−−−−−−−−−−−−!! H

Abstracts away intermediate computational steps
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Hybrid Iteration + Internal State

We take a monad able to handle internal states in programming

Then combine it with the extensional hybrid monad, and show that
the new monad supports iteration. This yields . . .

an interpretation domain for hybrid components in programming
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The Essence of Hybrid Automata

They extend non-deterministic finite automata with

• differential equations (for describing continuous dynamics)
• location invariants (for restricting the latter)
• assignments (for describing discrete dynamics)
• guards (for restricting the latter)

p′ = v
v′ = g
p ≥ 0

p = 0 ∧ v ≤ 0,
v := v × −0.5ff
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Hybrid Automata Formally

Hybrid automaton is a tuple (L, E , X , dyn, inv , asg , grd) where

• L is a finite set of locations, E is a transition relation
E ⊆ L × L, X is a finite set of real-valued variables

• dyn is a function that associates to each location a system of
differential equations over X

• inv is a function that associates to each location its invariant
(a predicate over the variables in X )

• asg is a function that given an edge it returns an assignment
command over X

• grd is a function that given an edge it returns a guard (i.e. a
predicate over the variables in X )
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Set-based Coalgebra

Definition (Coalgebra)
A function X ! FX where F : Set ! Set is a functor

Different F , different transition systems

• X ! IdX (deterministic)
• X ! PωX (non-deterministic)
• X ! Pω(A × X ) (labelled non-deterministic)
• X ! DωX (probabilistic)
• . . .
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The Message of Coalgebra

Coalgebra serves as a uniform theory of transition systems, whose
level of abstraction is functoriality

It includes,

• notions of (bi)simulation and observational behaviour
• techniques for minimisation
• notions of regular-expression
• . . .

Renato Neves Hybrid Automata as Coalgebras 16 / 47



A Surprisingly Useful Remark

Hybrid automata are nothing more than classical, non-deterministic
automata with decorated states and edges, i.e.

L ! Pω(L × Asg × Grd) × DifEq × Inv

This immediately provides

• a uniform notion of hybrid automata,
• a uniform notion of (bi)simulation and regular-expression

More details in [Neves and Barbosa, 2017]
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A Zoo of Hybrid Automata

L ! F (L × Asg × Grd) × DifEq × Inv

Functor Type
Id Deterministic
Pω Classical
Dω Markov
PωDω Probabilistic
Wω Weighted
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Uniform Semantics for Hybrid Automata

Many variants of hybrid automata come equipped with a semantics

We can encode these uniformly as a functor

J−K : HybAt(F ) −! A Category of Coalgebras

Transition systems involving sols. of diff. eqs.
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Preliminaries

Three assumptions (last two used merely to simplify presentation)

Unique Solutions
The function dyn only outputs systems of differential equations
with exactly one solution. This induces a function

flow : L × Rn × [0, ∞) ! Rn

Urgent Transitions
As soon as an edge is enabled the current location must switch

No Invariants
The invariants of all locations are true
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The Semantics

L × Rn ! F (L × Asg × Grd) × DifEq

⇒ L × Rn ! F (L × Asg × Grd) × (Rn)[0,∞)

⇒ L × Rn ! F
(
L × Asg × Grd × (Rn)[0,∞)

)
⇒ L × Rn ! F

(
L × Asg ×

∐
d∈[0,∞)(Rn)[0,d) × Rn + (Rn)[0,∞)

)
⇒ L × Rn ! F

(
L ×

∐
d∈[0,∞)(Rn)[0,d) × Rn + (Rn)[0,∞)

)
⇒ L × Rn ! F

(
L × Rn ×

∐
d∈[0,∞)(Rn)[0,d) + (Rn)[0,∞)

)

We obtain a coalgebra for F
(

− ×
∐

d∈[0,∞)(Rn)[0,d) + (Rn)[0,∞)
)

Space of continuous trajectories

Tensorial strength
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Revisiting the Bouncing Ball (F = Id)

Via the semantics functor J−K we obtain the following picture

bb =


p′ = v
v′ = g
p ≥ 0

p = 0 ∧ v ≤ 0,
v := v × −0.5ff

 behJbbK(∗, (5, 0)) = . . .

Position and velocity

0 0.2 0.4 0.6 0.8 10

1

2

3

4

5

time

po
s

1st element

0 0.2 0.4 0.6 0.8 10

1

2

3

4

5

time

po
s

2nd element

0 0.2 0.4 0.6 0.8 10

1

2

3

4

5

time
po

s

3rd element

Renato Neves Hybrid Automata as Coalgebras 22 / 47



Main Theorem

Our generalised semantics covers the established semantics for

• deterministic
• non-deterministic
• and probabilistic hybrid automata

We have an analogous result for (bi)simulation
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Syntax

Fix a stock of variables X = {x1, . . . , xn}. Then we have

Linear Terms
LTerm(X ) ∋ r | r · x | t + s

Atomic Programs
At(X ) ∋ x := t | x′

1 = t1, . . . , x′
n = tn for t

Hybrid Programs
Prog(X ) ∋ a | p ; q | if b then p else q | while b do { p }

real number

"run" the system of differential equations for t seconds
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Key Aspects of the Semantics

How to interpret a hybrid program p?

Jx′ = 1 for 1K : R −! (trajectories over R)

Signature of the denotation suggests the use of (Elgot) monads

i.e. functions from a time-domain into R
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Elgot Monads in a Nutshell

A monad T on Set is called Elgot if it has an iteration operator

f : X ! T (Y + X )
f † : X ! TY

that satisfies a certain set of laws

Intuitively, f † iterates over f until obtaining an output of type Y
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Semantics without Iteration

Let
∑

d∈[0,∞)(Rn)[0,d) be the set of trajectories

It induces a monad on Set

X 7! µγ.
(∑

d∈[0,∞)(Rn)[0,d) × γ + X
)

∼=
(∑

d∈[0,∞)(Rn)[0,d)
)∗

× X

The fixpoint expression says a program either produces a trajectory
and resumes or terminates with a value of type X

Kleisli composition amounts to concatenation of lists of trajectories
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Semantics without Iteration

Denotations JpK become functions of the type

JpK : Rn −!
(∑

d∈[0,∞)(Rn)[0,d)
)∗

× Rn

Example (with n = 1)

Jx′ = 1 for 1K(0) = ([λt ∈ [0, 1). 0 + t]︸ ︷︷ ︸
list of size 1

, 1)

Jx′ = 1 for 1 ; x′ = 1 for 1K(0)
= ([λt ∈ [0, 1). 0 + t, λt ∈ [0, 1). 1 + t]︸ ︷︷ ︸

list of size 2

, 2)

Jwhile true do {x′ = 1 for 1}K = ?
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Semantics with Iteration

Instead of using the least fixpoint we use the greatest

X 7! νγ.
(∑

d∈[0,∞)(Rn)[0,d) × γ + X
)

∼=
(∑

d∈[0,∞)(Rn)[0,d)
)∗

× X +
(
(
∑

d∈[0,∞)(Rn)[0,d)
)ω

This is an instance of a universal construction which tells that

• the functor above is also a monad (henceforth denoted by Ĥ)
• the monad supports a partial iteration operator

f : X ! Ĥ(Y + X )
f † : X ! ĤY
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Semantics with Iteration

f : X ! Ĥ(Y + X )
f † : X ! ĤY

f † iterates over f until the latter outputs a value of type Y ; and
concatenates all lists of trajectories produced along the way

Example (with n = 1)

Jwhile true do {x′ = 1 for 1}K(0)
= [λt ∈ [0, 1). 0 + t, λt ∈ [0, 1). 1 + t, λt ∈ [0, 1). 2 + t, . . . ]︸ ︷︷ ︸

infinite list of trajectories
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Going Extensional

The proposed semantics is intensional e.g.

(x′ = 1 for 1) ; (x′ = 1 for 1) ̸= (x′ = 1 for 2)

We wish to abstract away from invisible intermediate steps

This amounts to ‘coherently’ turning a sequence of trajectories
into a single trajectory
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From a Sequence of Trajectories into a Single Trajectory

Concatenation of Trajectories

(λt ∈ [0, d1). f1(t)) ++ (λt ∈ [0, d2). f2(t))
= λt ∈ [0, d1 + d2). if t < d1 then f1(t) else f2(t − d1)

Infinite Concatenation of Trajectories

f1 ++ f2 ++ · · · = λt ∈ [0,
∑

i∈Ndi). (f1 ++ · · · ++ fj)(t) where
j ≥ 1 is the smallest integer s.t. t <

∑
i≤jdi
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A Retraction Emerges

The previous operation induces a retraction

Ĥ
ρ
(( ((

iI
ν

hh

(
X 7!

∑
d∈[0,∞)(Rn)[0,d) × X +

∑
d∈[0,∞](Rn)[0,d)

)
ρ resorts to concatenation of trajectories and ν is defined as

inl(f , x) 7! inl([f ], x)
inr(f ) 7! inr[f[0,1), f[1,2), . . . ] if duration of f equals ∞
inr(f ) 7! inr[f , !, !, . . . ] otherwise

Denote the functor on the right-hand side by H
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An Extensional Hybrid Monad

Ĥ
ρ (to extensional)

(( ((

iI
ν

hh H

H inherits from the monad Ĥ (through ν and ρ)

• Kleisli composition
• an iteration operator

f : X ! H(Y + X )
f † : X ! HY
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Interpretation via H

Interpretation via H validates the aforementioned equality

(x′ = 1 for 1) ; (x′ = 1 for 1) = (x′ = 1 for 2)

and other expected ones, e.g.

while true do {x′ = 1 for 1} = while true do {x′ = 1 for 2}

Also it gives rise to different kinds of while-loop . . .
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A Taxonomy of While Loops

Non-progressive Progressive Zeno

Divergent
while (true) {
x := x + 1 }

while (true) {
x := x + 1 ; (wait ϵ) }

ϵ := 1
while (true) {
x := x + 1 ; (wait ϵ)
ϵ := ϵ

2 }

Convergent
x := 0
while (x ≤ 10) {
x := x + 1 }

x := 0
while (x ≤ 10) {
x := x + 1 ; (wait ϵ) }

N.A.
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The tool Lince

An implementation of the semantics available at

http://arcatools.org/assets/lince.html#fulllince

More details in [Goncharov et al., 2020]
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Hybrid Components

We wish to combine the notion of internal state with that of
hybrid behaviour

Useful for studying (the orchestration of) computational units that
interact with physical processes

while true do
{

if f
(
readSens1(), readSens2()

)
then heatReactor()
else coolReactor()

}
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The State Monad

Let S be a set of states

Functorial part defined by X 7! (S × X )S

Kleisli composition amounts to carrying the current state from one
computation to another

Does not support iteration
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State Monad + Extensional Hybrid Monad

General categorical results allow us to combine both monads

The functorial part of the combined monad is given by

X 7! (H(S × X ))S

Kleisli composition is a combination of the previous compositions

A hybrid component c : A ! B is interpreted as a map

JcK : JAK ! (H(S × JBK))S
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State + Hybrid Iteration in Programming

The combined monad inherits iteration from the hybrid one

f : X ! (H(S × (Y + X )))S

⇒ f : X × S ! H(S × (Y + X ))
⇒ f : X × S ! H(S × Y + S × X )
⇒ f † : X × S ! H(S × Y )
⇒ f † : X ! (H(S × Y ))S

Theorem
The combined monad is Elgot
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Conclusions and Future Work

We saw how to interpret hybrid behaviour in different settings

• hybrid automata
• hybrid while-language
• while-language + hybrid components

Currently working on the extension of the previous results to a
quantitative setting

• quantitative bisimulation
• probabilities
• stability
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